1 YANGX J. Human recognition using multi-frame gait silhouette matching [J]. International Journal of Advancements in Computing Technology, 2012, 4(22): 788-795. 2 MOESLUNDT B, HILTONA, KRüGERV. A survey of advances in vision-based human motion capture and analysis [J]. Computer Vision and Image Understanding, 2006, 104(2/3): 90-126. 3 WUX, LIANGW, JIAY. Action recognition feedback-based framework for human pose reconstruction from monocular images [J]. Pattern Recognition Letters, 2009, 30(12): 1077-1085. 4 HUANGC L, CHUNGC Y. A real-time model-based human motion tracking and analysis for human-computer interface systems [J]. EURASIP Journal on Advances in Signal Processing, 2004, 2004(11): Article No. 616891. 5 郑远攀,李广阳,李晔.深度学习在图像识别中的应用研究综述[J].计算机工程与应用,2019,55(12):20-36. ZHENGY P, LIG Y, LIY. Survey of application of deep learning in image recognition [J]. Computer Engineering and Applications, 2019, 55(12): 20-36. 6 LIFSHITZI, FETAYAE, ULLMANS. Human pose estimation using deep consensus voting [C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9906. Cham: Springer, 2016: 246-260. 7 PISHCHULINL, INSAFUTDINOVE, TANGS, et al. DeepCut: joint subset partition and labeling for multi person pose estimation[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 4929-4937. 8 INSAFUTDINOVE, PISHCHULINL, ANDRESB, et al. DeeperCut: a deeper, stronger, and faster multi-person pose estimation model [C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9910. Cham: Springer, 2016: 34-50. 9 WEIS E, RAMAKRISHNAV, KANADET, et al. Convolutional pose machines [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 4724-4732. 10 ANDRILUKAM, PISHCHULINL, GEHLERP, et al. MPII human pose dataset [DB/OL]. [2019-04-07]. http://human-pose.mpi-inf.mpg.de. 11 JOHNSONS, EVERINGHAMM. Leeds sports pose dataset [DB/OL]. [2019-04-07]. http://sam.johnson.io/research/lsp.html. 12 IANDOLAF N, HANS, MOSKEWICZM W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size [EB/OL]. [2019-02-21]. https://arxiv.org/pdf/1602.07360.pdf. 13 RAMAKRISHNAV, MUNOZD, HEBERTM, et al. Pose machines: articulated pose estimation via inference machines [C]// Proceedings of the 2014 European Conference on Computer Vision, LNCS 8690. Cham: Springer, 2014: 33-47. 14 张世豪.基于深度学习的人体骨骼关键点检测方法研究[D].桂林:桂林电子科技大学,2019:38-42. ZHANGS H. Research on human pose estimation method based on deep learning [D]. Guilin: Guilin University of Electronic Technology, 2019:38-42. 15 QIANGB, ZHANGS, ZHANY, et al. Improved convolutional pose machines for human pose estimation using image sensor data [J]. Sensors, 2019, 19(3): Article No. 718. 16 JOHNSONS, EVERINGHAMM. Leeds sports pose extended training dataset [DB/OL]. [2019-04-07]. http://sam.johnson.io/research/lspet.html. 17 武妍,张立明.神经网络的泛化能力与结构优化算法研究[J].计算机应用研究,2002,19(6):21-25,84. WUY, ZHANGL M. A survey of research work on neural network generalization and structure optimization algorithms [J]. Application Research of Computers, 2002, 19(6): 21-25, 84. 18 MOHAMEDA, HINTONG, PENNG. Understanding how deep belief networks perform acoustic modeling [C]// Proceedings of the 2012 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2012: 4273-4276. |