1 朱斌,赵志刚.守护针尖上的安全——中国输液安全与防护专家共识[J].药品评价,2016,13(10):8-17. ZHUB, ZHAOZ G. Guarantee the safety of injection—the expert consensus on China intravenous injection treatment [J]. Drug Evaluation, 2016, 13(10): 8-17. 2 张辉,师统,何世超,等.基于逆向P-M扩散的医用输液容器组合盖缺陷检测系统[J].电子测量与仪器学报,2015,29(5):692-700. ZHANGH, SHIT, HES C, et al. Defect detection system of medical infusion container combination cover based on reverse P-M diffusion [J]. Journal of Electronic Measurement and Instrumentation, 2015, 29(5): 692-700. 3 温原,葛仁彦.太赫兹技术检验滚塑制品壁内气泡缺陷的可行性[J].压力容器,2019,36(7):69-72. WENY, GER Y. Feasibility of testing bubble defects in the wall of rotomolded product by terahertz technology [J]. Pressure Vessel Technology, 2019, 36(7): 69-72. 4 张俊生,王明泉,郭晋秦,等.BGA焊点气泡缺陷X射线图像的动态阈值分割方法[J].火力与指挥制,2018,43(10):113-116. ZHANGJ S, WANGM G, GUOJ Q, et al. Dynamic threshold segmentation of bubble defects in BGA solder balls [J]. Fire Control and Command Control, 2018, 43(10): 113-116. 5 GHOSHS, DAS N, DAS I, et al. Understanding deep learning techniques for image segmentation [J]. ACM Computing Surveys, 2019, 52(4): Article No. 73. 6 LONGJ, SHELHAMERE, DARRELLT. Fully convolutional networks for semantic segmentation [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 3431-3440. 7 CHENL C, PAPANDREOUG, SCHROFFF, et al. Rethinking atrous convolution for semantic image segmentation [EB/OL]. [2019-02-20]. https://arxiv.org/pdf/1706.05587.pdf. 8 CHENL C, ZHUY, PAPANDREOUG, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 833-851. 9 RONNEBERGERO, FISCHERP, BROXT. U-Net: convolutional networks for biomedical image segmentation [C]// Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham: Springer, 2015: 234-241. 10 VISINF, ROMEROA, CHO K, et al. ReSeg: a recurrent neural network-based model for semantic segmentation [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2016: 426-433. 11 赵瑞祥,侯宏花,张鹏程,等.结合全卷积网络和K均值聚类的球栅阵列焊球边缘气泡分割[J].计算机应用,2019,39(9):2580-2585. ZHAOR X,HOUH H, ZHANGP C, et al. Welding ball edge bubble segmentation for ball grid array based on full convolutional network and K-means clustering [J]. Journal of Computer Applications, 2019,39(9):2580-2585. 12 刘畅,张剑,林建平.基于神经网络的磁瓦表面缺陷检测识别[J].表面技术,2019,48(8):330-339. LIUC, ZHANGJ, LINJ P. Detection and identification of surface defects of magnetic tile based on neural network [J]. Surface Technology, 2019, 48(8): 330-339. 13 POUDELR P K, LIWICKIS, CIPOLLAR. Fast-SCNN: fast semantic segmentation network [EB/OL]. [2019-02-20]. https://arxiv.org/pdf/1902.04502.pdf. 14 ZHAOH, SHIJ, QIX, et al. Pyramid scene parsing network [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6230-6239. 15 YUC, WANGJ, PENGC, et al. BiSeNet: bilateral segmentation network for real-time semantic segmentation [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11217. Cham: Springer, 2018: 334-349. 16 ZHAOH, QIX, SHENX, et al. ICNet for real-time semantic segmentation on high-resolution images [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11207. Cham: Springer, 2018: 418-434. 17 POUDELR P K, BONDEU, LIWICKIS, et al. ContextNet: exploring context and detail for semantic segmentation in real-time [EB/OL]. [2019-02-20]. https://arxiv.org/pdf/1805.04554.pdf. 18 IOFFES, SZEGEDYC. Batch normalization: accelerating deep network training by reducing internal covariate shift [EB/OL]. [2019-02-20]. https://arxiv.org/pdf/1502.03167.pdf. 19 CHENL C, PAPANDREOUG, KOKKINOSI, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848. 20 HUJ, SHENL, SUNG, et al. Squeeze-and-excitation networks [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141. |