Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (9): 2963-2969.DOI: 10.11772/j.issn.1001-9081.2022091458
• Multimedia computing and computer simulation • Previous Articles Next Articles
Kunting LU, Rongrong FEI, Xuande ZHANG()
Received:
2022-10-08
Revised:
2022-12-01
Accepted:
2022-12-06
Online:
2023-02-22
Published:
2023-09-10
Contact:
Xuande ZHANG
About author:
LU Kunting, born in 1999, M. S. candidate. Her research interests include remote sensing image fusion.Supported by:
通讯作者:
张选德
作者简介:
路琨婷(1999—),女,陕西渭南人,硕士研究生,主要研究方向:遥感图像融合基金资助:
CLC Number:
Kunting LU, Rongrong FEI, Xuande ZHANG. Remote sensing image pansharpening by convolutional neural network[J]. Journal of Computer Applications, 2023, 43(9): 2963-2969.
路琨婷, 费蓉蓉, 张选德. 融合卷积神经网络的遥感图像全色锐化[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2963-2969.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022091458
方法 | PSNR/dB | SSIM | CC | SAM | ERGAS | Q4 |
---|---|---|---|---|---|---|
IHS | 25.255 0 | 0.630 4 | 0.791 1 | 0.132 6 | 5.254 0 | 0.738 5 |
GS | 25.294 5 | 0.642 3 | 0.808 0 | 0.131 2 | 4.991 3 | 0.734 7 |
Wavelet | 24.562 3 | 0.563 9 | 0.781 4 | 0.133 6 | 5.321 2 | 0.712 1 |
MTF-GLP | 26.294 0 | 0.658 0 | 0.855 8 | 0.126 0 | 4.844 1 | 0.783 6 |
DMDNet | 31.117 9 | 0.902 5 | 0.901 2 | 0.035 4 | 2.201 6 | 0.940 0 |
MSDCNN | 30.185 8 | 0.877 6 | 0.896 6 | 0.042 3 | 2.539 7 | 0.939 9 |
RSIFNN | 30.631 2 | 0.890 1 | 0.888 9 | 0.040 7 | 2.315 0 | 0.939 3 |
PanNet | 30.907 9 | 0.899 9 | 0.909 1 | 0.036 7 | 2.284 4 | 0.940 4 |
CMRNet | 32.602 7 | 0.920 9 | 0.934 1 | 0.030 8 | 1.953 6 | 0.942 6 |
Tab. 1 Comparison of results of different methods on reduced-resolution QuickBird dataset
方法 | PSNR/dB | SSIM | CC | SAM | ERGAS | Q4 |
---|---|---|---|---|---|---|
IHS | 25.255 0 | 0.630 4 | 0.791 1 | 0.132 6 | 5.254 0 | 0.738 5 |
GS | 25.294 5 | 0.642 3 | 0.808 0 | 0.131 2 | 4.991 3 | 0.734 7 |
Wavelet | 24.562 3 | 0.563 9 | 0.781 4 | 0.133 6 | 5.321 2 | 0.712 1 |
MTF-GLP | 26.294 0 | 0.658 0 | 0.855 8 | 0.126 0 | 4.844 1 | 0.783 6 |
DMDNet | 31.117 9 | 0.902 5 | 0.901 2 | 0.035 4 | 2.201 6 | 0.940 0 |
MSDCNN | 30.185 8 | 0.877 6 | 0.896 6 | 0.042 3 | 2.539 7 | 0.939 9 |
RSIFNN | 30.631 2 | 0.890 1 | 0.888 9 | 0.040 7 | 2.315 0 | 0.939 3 |
PanNet | 30.907 9 | 0.899 9 | 0.909 1 | 0.036 7 | 2.284 4 | 0.940 4 |
CMRNet | 32.602 7 | 0.920 9 | 0.934 1 | 0.030 8 | 1.953 6 | 0.942 6 |
方法 | PSNR/dB | SSIM | CC | SAM | ERGAS | Q4 |
---|---|---|---|---|---|---|
IHS | 22.784 5 | 0.530 3 | 0.763 0 | 0.145 2 | 5.340 0 | 0.689 5 |
GS | 22.696 9 | 0.533 6 | 0.766 9 | 0.148 6 | 5.234 3 | 0.676 7 |
Wavelet | 22.862 0 | 0.481 4 | 0.785 1 | 0.135 1 | 5.058 6 | 0.681 7 |
MTF-GLP | 23.535 9 | 0.548 9 | 0.831 6 | 0.144 7 | 5.004 1 | 0.727 2 |
DMDNet | 31.249 2 | 0.899 9 | 0.953 0 | 0.038 6 | 2.414 9 | 0.926 9 |
MSDCNN | 29.734 9 | 0.846 9 | 0.927 4 | 0.050 2 | 2.896 2 | 0.923 8 |
RSIFNN | 29.916 7 | 0.855 8 | 0.932 1 | 0.047 7 | 2.818 7 | 0.923 0 |
PanNet | 30.704 3 | 0.886 9 | 0.946 0 | 0.041 5 | 2.557 6 | 0.925 8 |
CMRNet | 33.659 2 | 0.934 3 | 0.973 1 | 0.031 2 | 1.934 0 | 0.932 4 |
Tab. 2 Comparison of results of different methods on reduced-resolution GF1 dataset
方法 | PSNR/dB | SSIM | CC | SAM | ERGAS | Q4 |
---|---|---|---|---|---|---|
IHS | 22.784 5 | 0.530 3 | 0.763 0 | 0.145 2 | 5.340 0 | 0.689 5 |
GS | 22.696 9 | 0.533 6 | 0.766 9 | 0.148 6 | 5.234 3 | 0.676 7 |
Wavelet | 22.862 0 | 0.481 4 | 0.785 1 | 0.135 1 | 5.058 6 | 0.681 7 |
MTF-GLP | 23.535 9 | 0.548 9 | 0.831 6 | 0.144 7 | 5.004 1 | 0.727 2 |
DMDNet | 31.249 2 | 0.899 9 | 0.953 0 | 0.038 6 | 2.414 9 | 0.926 9 |
MSDCNN | 29.734 9 | 0.846 9 | 0.927 4 | 0.050 2 | 2.896 2 | 0.923 8 |
RSIFNN | 29.916 7 | 0.855 8 | 0.932 1 | 0.047 7 | 2.818 7 | 0.923 0 |
PanNet | 30.704 3 | 0.886 9 | 0.946 0 | 0.041 5 | 2.557 6 | 0.925 8 |
CMRNet | 33.659 2 | 0.934 3 | 0.973 1 | 0.031 2 | 1.934 0 | 0.932 4 |
方法 | Dλ | DS | QNR |
---|---|---|---|
IHS | 0.101 4 | 0.222 9 | 0.700 1 |
GS | 0.081 0 | 0.200 7 | 0.737 3 |
Wavelet | 0.113 8 | 0.116 1 | 0.785 9 |
MTF-GLP | 0.123 3 | 0.129 4 | 0.765 8 |
DMDNet | 0.046 3 | 0.005 2 | 0.948 7 |
MSDCNN | 0.045 4 | 0.005 4 | 0.949 4 |
RSIFNN | 0.042 6 | 0.006 2 | 0.952 0 |
PanNet | 0.045 5 | 0.005 6 | 0.949 2 |
CMRNet | 0.043 0 | 0.005 0 | 0.952 2 |
Tab. 3 Comparison of results of different methods on full-resolution QuickBird dataset
方法 | Dλ | DS | QNR |
---|---|---|---|
IHS | 0.101 4 | 0.222 9 | 0.700 1 |
GS | 0.081 0 | 0.200 7 | 0.737 3 |
Wavelet | 0.113 8 | 0.116 1 | 0.785 9 |
MTF-GLP | 0.123 3 | 0.129 4 | 0.765 8 |
DMDNet | 0.046 3 | 0.005 2 | 0.948 7 |
MSDCNN | 0.045 4 | 0.005 4 | 0.949 4 |
RSIFNN | 0.042 6 | 0.006 2 | 0.952 0 |
PanNet | 0.045 5 | 0.005 6 | 0.949 2 |
CMRNet | 0.043 0 | 0.005 0 | 0.952 2 |
方法 | PSNR/dB | SSIM | CC | SAM | ERGAS | Q4 |
---|---|---|---|---|---|---|
PanNet | 30.704 3 | 0.886 9 | 0.946 0 | 0.041 5 | 2.557 6 | 0.925 8 |
CP | 31.656 8 | 0.905 8 | 0.957 5 | 0.037 2 | 2.315 9 | 0.927 6 |
PC | 32.951 2 | 0.925 2 | 0.968 3 | 0.033 6 | 2.053 3 | 0.931 8 |
CMRNet | 33.659 2 | 0.934 3 | 0.973 1 | 0.031 2 | 1.934 0 | 0.932 4 |
Tab. 4 Comparison of ablation experiment results of different loss functions and network structure combinations
方法 | PSNR/dB | SSIM | CC | SAM | ERGAS | Q4 |
---|---|---|---|---|---|---|
PanNet | 30.704 3 | 0.886 9 | 0.946 0 | 0.041 5 | 2.557 6 | 0.925 8 |
CP | 31.656 8 | 0.905 8 | 0.957 5 | 0.037 2 | 2.315 9 | 0.927 6 |
PC | 32.951 2 | 0.925 2 | 0.968 3 | 0.033 6 | 2.053 3 | 0.931 8 |
CMRNet | 33.659 2 | 0.934 3 | 0.973 1 | 0.031 2 | 1.934 0 | 0.932 4 |
短连接 | 长连接 | CA | PSNR/dB | SSIM | CC | SAM | ERGAS | Q4 |
---|---|---|---|---|---|---|---|---|
√ | × | × | 32.816 9 | 0.924 5 | 0.968 3 | 0.032 7 | 2.072 2 | 0.931 2 |
√ | √ | × | 32.882 1 | 0.925 5 | 0.968 9 | 0.032 6 | 2.064 3 | 0.931 8 |
√ | √ | √ | 33.672 7 | 0.933 7 | 0.973 2 | 0.031 5 | 1.892 7 | 0.932 6 |
Tab. 5 Comparison of ablation experimental results of different modules
短连接 | 长连接 | CA | PSNR/dB | SSIM | CC | SAM | ERGAS | Q4 |
---|---|---|---|---|---|---|---|---|
√ | × | × | 32.816 9 | 0.924 5 | 0.968 3 | 0.032 7 | 2.072 2 | 0.931 2 |
√ | √ | × | 32.882 1 | 0.925 5 | 0.968 9 | 0.032 6 | 2.064 3 | 0.931 8 |
√ | √ | √ | 33.672 7 | 0.933 7 | 0.973 2 | 0.031 5 | 1.892 7 | 0.932 6 |
方法 | 参数量/106 | 方法 | 参数量/106 |
---|---|---|---|
DMDNet | 0.19 | PanNet | 0.14 |
MSDCNN | 0.21 | CMRNet | 0.19 |
RSIFNN | 0.32 |
Tab. 6 Parameters of different methods
方法 | 参数量/106 | 方法 | 参数量/106 |
---|---|---|---|
DMDNet | 0.19 | PanNet | 0.14 |
MSDCNN | 0.21 | CMRNet | 0.19 |
RSIFNN | 0.32 |
1 | 吴宗骏,吴炜,杨晓敏,等. 改进的基于稀疏表示的全色锐化算法[J]. 计算机应用, 2019, 39(2): 540-545. 10.11772/j.issn.1001-9081.2018061374 |
WU Z J, WU W, YANG X M, et al. Improved panchromatic sharpening algorithm based on sparse representation[J]. Journal of Computer Applications, 2019, 39(2): 540-545. 10.11772/j.issn.1001-9081.2018061374 | |
2 | TU T M, HUANG P S, HUNG C L, et al. A fast intensity-hue-saturation fusion technique with spectral adjustment for IKONOS imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(4): 309-312. 10.1109/lgrs.2004.834804 |
3 | THOMAS C, RANCHIN T, WALD L, et al. Synthesis of multispectral images to high spatial resolution: a critical review of fusion methods based on remote sensing physics[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(5): 1301-1312. 10.1109/tgrs.2007.912448 |
4 | LEE J, LEE C. Fast and efficient panchromatic sharpening[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(1): 155-163. 10.1109/tgrs.2009.2028613 |
5 | MASI G, COZZOLINO D, VERDOLIVA L, et al. Pansharpening by convolutional neural networks[J]. Remote Sensing, 2016, 8(7): No.594. 10.3390/rs8070594 |
6 | WEI Y C, YUAN Q Q. Deep residual learning for remote sensed imagery pansharpening[C]// Proceedings of the 2017 International Workshop on Remote Sensing with Intelligent Processing. Piscataway: IEEE, 2017: 1-4. 10.1109/rsip.2017.7958794 |
7 | YANG J F, FU X Y, HU Y W, et al. PanNet: a deep network architecture for pan-sharpening[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 1753-1761. 10.1109/iccv.2017.193 |
8 | YUAN Q Q, WEI Y C, MENG X C, et al. A multiscale and multidepth convolutional neural network for remote sensing imagery pan-sharpening[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(3): 978-989. 10.1109/jstars.2018.2794888 |
9 | FU X Y, WANG W, HUANG Y, et al. Deep multiscale detail networks for multiband spectral image sharpening[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(5): 2090-2104. 10.1109/tnnls.2020.2996498 |
10 | ZHANG H, MA J Y. GTP-PNet: a residual learning network based on gradient transformation prior for pansharpening[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 172: 223-239. 10.1016/j.isprsjprs.2020.12.014 |
11 | WANG Y J, XIE Y Y, WU Y Y, et al. An unsupervised multi-scale generative adversarial network for remote sensing image pan-sharpening[C]// Proceedings of the 2022 International Conference on Multimedia Modeling, LNCS 13142. Cham: Springer, 2022: 356-368. |
12 | ZHOU H Y, LIU Q J, WENG D W, et al. Unsupervised cycle-consistent generative adversarial networks for pan sharpening[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: No.5408814. 10.1109/tgrs.2022.3166528 |
13 | 胡高鹏,陈子鎏,王晓明,等. 基于深度渐进式反投影注意力网络的图像超分辨率重建[J]. 计算机应用, 2020, 40(7): 2077-2083. 10.11772/j.issn.1001-9081.2019122155 |
HU G P, CHEN Z L, WANG X M, et al. Image super-resolution reconstruction based on deep progressive back-projection attention network[J]. Journal of Computer Applications, 2020, 40(7): 2077-2083. 10.11772/j.issn.1001-9081.2019122155 | |
14 | TU T M, SU S C, SHYU H C, et al. A new look at IHS-like image fusion methods[J]. Information Fusion, 2001, 2(3): 177-186. 10.1016/s1566-2535(01)00036-7 |
15 | DOU W, CHEN Y H, LI X B, et al. A general framework for component substitution image fusion: an implementation using the fast image fusion method[J]. Computers and Geosciences, 2007, 33(2): 219-228. 10.1016/j.cageo.2006.06.008 |
16 | ZHANG Y L, LI K P, LI K, et al. Image super-resolution using very deep residual channel attention networks[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 294-310. |
17 | WALD L, RANCHIN T, MANGOLINI M. Fusion of satellite images of different spatial resolutions: assessing the quality of resulting images[J]. Photogrammetric Engineering and Remote Sensing, 1997, 63(6): 691-699. |
18 | AIAZZI B, ALPARONE L, BARONTI S, et al. MTF-tailored multiscale fusion of high-resolution MS and pan imagery[J]. Photogrammetric Engineering and Remote Sensing, 2006, 72(5): 591-596. 10.14358/pers.72.5.591 |
19 | SHAO Z F, CAI J J. Remote sensing image fusion with deep convolutional neural network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(5): 1656-1669. 10.1109/jstars.2018.2805923 |
[1] | Shaofa SHANG, Lin JIANG, Yuancheng LI, Yun ZHU. Adaptive partitioning and scheduling method of convolutional neural network inference model on heterogeneous platforms [J]. Journal of Computer Applications, 2023, 43(9): 2828-2835. |
[2] | Yuanyuan QIN, Hong ZHANG. Pulmonary nodule detection algorithm based on attention feature pyramid networks [J]. Journal of Computer Applications, 2023, 43(7): 2311-2318. |
[3] | Huibin ZHANG, Liping FENG, Yaojun HAO, Yining WANG. Ancient mural dynasty identification based on attention mechanism and transfer learning [J]. Journal of Computer Applications, 2023, 43(6): 1826-1832. |
[4] | Rui XU, Shuang LIANG, Hang WAN, Yimin WEN, Shiming SHEN, Jian LI. Extraction of PM2.5 diffusion characteristics based on candlestick pattern matching [J]. Journal of Computer Applications, 2023, 43(5): 1394-1400. |
[5] | Jiahong SUI, Yingchi MAO, Huimin YU, Zicheng WANG, Ping PING. Global image captioning method based on graph attention network [J]. Journal of Computer Applications, 2023, 43(5): 1409-1415. |
[6] | Jianhui HE, Chunlong HU, Xin SHU. Multi-task age estimation method based on multi-peak label distribution learning [J]. Journal of Computer Applications, 2023, 43(5): 1578-1583. |
[7] | Liyao FU, Mengxiao YIN, Feng YANG. Transformer based U-shaped medical image segmentation network: a survey [J]. Journal of Computer Applications, 2023, 43(5): 1584-1595. |
[8] | Haiyu YANG, Wenpu GUO, Kai KANG. Signal modulation recognition method based on convolutional long short-term deep neural network [J]. Journal of Computer Applications, 2023, 43(4): 1318-1322. |
[9] | Jinyue LIU, Huiyu LI, Xiaohui JIA, Jiarui LI. Dynamic gait recognition method based on human model constraints [J]. Journal of Computer Applications, 2023, 43(3): 972-977. |
[10] | Haifeng LI, Fan ZHANG, Minnan PIAO, Huaichao WANG, Nansha LI, Zhongcheng GUI. Automatic detection of targets under airport pavement based on channel and spatial attention [J]. Journal of Computer Applications, 2023, 43(3): 930-935. |
[11] | Ranyan NI, Yi ZHANG. Action recognition method based on video spatio-temporal features [J]. Journal of Computer Applications, 2023, 43(2): 521-528. |
[12] | Ping WANG, Nan CHEN, Lei LU. Fall detection algorithm based on scene prior and attention guidance [J]. Journal of Computer Applications, 2023, 43(2): 529-535. |
[13] | SHEN Zhijun, MU Lina, GAO Jing, SHI Yuanhang, LIU Zhiqiang. Review of fine-grained image categorization [J]. Journal of Computer Applications, 2023, 43(1): 51-60. |
[14] | LIN Jianzhuang, YANG Wenzhong, TAN Sixiang, ZHOU Lexin, CHEN Danni. Fusing filter enhancement and reverse attention network for polyp segmentation [J]. Journal of Computer Applications, 2023, 43(1): 265-272. |
[15] | Yuefeng LIU, Xiaoyan ZHANG, Wei GUO, Haodong BIAN, Yingjie HE. Remaining useful life prediction method of aero-engine based on optimized hybrid model [J]. Journal of Computer Applications, 2022, 42(9): 2960-2968. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||