1 HUANGJ, ROZELLES. Technological change: rediscovering the engine of productivity growth in China’s rural economy [J]. Journal of Development Economics, 1996, 49(2): 337-369. 2 孙生阳,孙艺夺,胡瑞法,等.中国农技推广体系的现状、问题及政策研究[J].中国软科学,2018(6):25-34. SUNS Y, SUNY D, HUR F, et al. Current situation, problems and policy of agricultural extension system in China [J]. China Soft Science, 2018(6): 25-34. 3 赵春江.智慧农业发展现状及战略目标研究[J].智慧农业,2019,1(1):1-7. ZHAOC J. State-of-the-art and recommended developmental strategic objectives of smart agriculture [J]. Smart Agriculture, 2019, 1(1): 1-7. 4 郑实福,刘挺,秦兵,等.自动问答综述[J].中文信息学报,2002,16(6):46-52. ZHENGS F, LIUT, QINB, et al. Overview of question-answering [J]. Journal of Chinese Information Processing, 2002, 16(6): 46-52. 5 苏金树,张博锋,徐昕.基于机器学习的文本分类技术研究进展[J].软件学报,2006,17(9):1848-1859. SUJ S, ZHANGB F, XUX. Advances in machine learning based text categorization [J]. Journal of Software, 2006, 17(9): 1848-1859. 6 MIKOLOVT, CHENK, CORRADOG, et al. Efficient estimation of word representations in vector space [EB/OL]. [2019-03-12].https://arxiv.org/pdf/1301.3781.pdf. 7 LEQ, MIKOLOVT. Distributed representations of sentences and documents [EB/OL]. [2019-03-12]. https://cs.stanford.edu/~quocle/paragraph_vector.pdf. 8 PENNINGTONJ, SOCHERR, MANNINGC. Glove: global vectors for word representation [C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2014: 1532-1543. 9 LAIS, XUL, LIUK, et al. Recurrent convolutional neural networks for text classification [C]// Proceedings of the 29th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2015:2267-2273. 10 ZHOUP, QIZ, ZHENGS, et al. Text classification improved by integrating bidirectional LSTM with two-dimensional max pooling [C]// Proceedings of the 26th International Conference on Computational Linguistics: Technical Papers. Stroudsburg: ACL, 2016: 3485-3495. 11 LET T H, KIMJ, KIMH. Classification performance using gated recurrent unit recurrent neural network on energy disaggregation [C]// Proceedings of the 2016 International Conference on Machine Learning and Cybernetics. Piscataway: IEEE, 2016: 105-110. 12 DEVLINJ, CHANGM W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding [C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2019: 4171-4186. 13 段青玲,魏芳芳,张磊,等.基于Web数据的农业网络信息自动采集与分类系统[J].农业工程学报,2016,32(12):172-178. DUANQ L, WEIF F, ZHANGL, et al. Automatic acquisition and classification system for agricultural network information based on Web data [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(12): 172-178. 14 赵明,杜会芳,董翠翠,等.基于word2vec和LSTM的饮食健康文本分类研究[J].农业机械学报,2017,48(10):202-208. ZHAOM, DUH F, DONGC C, et al. Diet health text classification based on word2vec and LSTM [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(10): 202-208. 15 赵明,董翠翠,董乔雪,等.基于BIGRU的番茄病虫害问答系统问句分类研究[J].农业机械学报,2018,49(5):271-276. ZHAOM, DONGC C, DONGQ X, et al. Question classification of tomato pests and diseases question answering system based on BIGRU [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(5): 271-276. 16 梁敬东,崔丙剑,姜海燕,等.基于word2vec和LSTM的句子相似度计算及其在水稻FAQ 问答系统中的应用[J].南京农业大学学报,2018,41(5):946-953. LIANGJ D, CUIB J, JIANGH Y, et al. Sentence similarity computing based on word2vec and LSTM and its application in rice FAQ question-answering system[J]. Journal of Nanjing Agricultural University, 2018, 41(5): 946-953. 17 张明岳,吴华瑞,朱华吉.基于卷积模型的农业问答语性特征抽取分析[J].农业机械学报,2018,49(12):203-210. ZHANGM Y, WUH R, ZHUH J. Analysis of extraction of semantic feature in agricultural question and answer based on convolutional model [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(12): 203-210. 18 李枫林,柯佳.词向量语义表示研究进展[J].情报科学,2019,37(5):155-165. LIF L, KEJ. Research progress of word vector semantic representation [J]. Information Science, 2019, 37(5): 155-165. 19 中国农业科学院植物保护研究所,中国植物保护学会.中国农作物病虫害[M].3版.北京:中国农业出版社,2015:26-58. Institute of Plant Protection of Chinese Academy of Agricultural Sciences, China Society of Plant Protection. Chinese Crop Pests and Diseases [M]. 3rd ed. Beijing: China Agricultural Press, 2015: 26-58. 20 LINZ, FENGM, SANTOS C NDOS, et al. A structured self-attentive sentence embedding [EB/OL]. [2019-03-12]. https://arxiv.org/pdf/1703.03130.pdf. 21 VASWANIA, SHAZEERN, PARMARN, et al. Attention is all you need [C] // Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. 22 郁可人,傅云斌,董启文.基于神经网络语言模型的分布式词向量研究进展[J].华东师范大学学报(自然科学版),2017(5):52-65,79. YUK R, FUY B, DONGQ W. Survey on distributed word embeddings based on neural network language models [J]. Journal of East China Normal University (Natural Science), 2017(5): 52-65, 79. 23 PETERSM E, NEUMANNM, IYYERM, et al. Deep contextualized word representations [C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2018: 2227-2237. 24 RADFORDA, NARASIMHANK, SALIMANST, et al. Improving language understanding by generative pre-training [EB/OL]. [2019-03-12]. https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf. 25 KINGMAD P, BAJ L. Adam: a method for stochastic optimization [EB/OL]. [2019-03-12].https://arxiv.org/pdf/1412.6980.pdf. 26 SRIVASTAVAN, HINTONG, KRIZHEVSKYA, et al. Dropout: a simple way to prevent neural networks from overfitting [J]. The Journal of Machine Learning Research, 2014, 15(1): 1929-1958. 27 陈鹏,冯海宽,李长春,等.无人机影像光谱和纹理融合信息估算马铃薯叶片叶绿素含量[J].农业工程学报,2019,35(11):63-74. CHENP, FENGH K, LIC C, et al. Estimation of chlorophyll content in potato using fusion of texture and spectral features derived from UAV multispectral image [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(11): 63-74. 28 POWERSD M W. Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation [J]. Journal of Machine Learning Technologies, 2011, 2(1): 37-63. |