[1] ZHU Z,DONG S,YU C,et al. A text hybrid clustering algorithm based on HowNet semantics[J]. Key Engineering Materials,2011, 474/475/476/476:2071-2078. [2] 张花齐, 王光磊, 李艳, 等. CT图像肺结节的全自动算法研究[J]. 激光杂志,2019,40(4):59-63.(ZHANG H Q,WANG G L,LI Y,et al. Automated algorithm for CT image of pulmonary nodules[J]. Laser Journal,2019,40(4):59-63.) [3] 孙申申, 李宏, 侯欣然, 等. 基于EM和Mean-shift的肺结节分割[J]. 中国图象图形学报,2009,14(10):2016-2022.(SUN S S, LI H,HOU X R,et al. Pulmonary nodule segmentation based on EM and Mean-shift[J]. Journal of Image and Graphics,2009,14(10):2016-2022.) [4] ARMATO S G II,GIGER M L,MORAN C J,et al. Computerized detection of pulmonary nodules on CT scans[J]. RadioGraphics, 1999,19(5):1301-1311. [5] KANAZAWA K,KAWATA Y,NIKI N,et al. Computer-aided diagnosis for pulmonary nodules based on helical CT images[J]. Computerized Medical Imaging and Graphics,1998,22(2):157-167. [6] MIWA T,KAKO J-I,YAMAMOTO S,et al. Automatic detection of lung cancers in chest CT images by the variable N-quoit filter[J]. Systems and Computers in Japan,2002,33(1):53-63. [7] MESSAY T,HARDIE R C,TUINSTRA T R. Segmentation of pulmonary nodules in computed tomography using a regression neural network approach and its application to the lung image database consortium and image database resource initiative dataset[J]. Medical Image Analysis,2015,22(1):48-62. [8] ZHAO J,JI G,XIA Y,et al. Cavitary nodule segmentation in computed tomography images based on self-generating neural networks and particle swarm optimisation[J]. International Journal of Bio-Inspired Computation,2015,7(1):62-67. [9] MONKAM P,QI S,XU M,et al. CNN models discriminating between pulmonary micro-nodules and non-nodules from CT images[J]. BioMedical Engineering OnLine,2018,17(1):No. 96. [10] SHELHAMER E,LONG J,DARRELT. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(4):640-651. [11] CUI S,MAO L,XIONG S. Brain tumor automatic segmentation using fully convolutional networks[J]. Journal of Medical Imaging and Health Informatics,2017,7(7):1641-1647. [12] SHAIKH M,ANAND G,ACHARYA G,et al. Brain tumor segmentation using dense fully convolutional neural network[C]//Proceedings of the 3rd International MICCAI Brainlesion Workshop. Cham:Springer,2017:309-319. [13] RONNEBERGER O,FISCHER P,BROX T. U-Net:convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention,LNCS 9351. Cham:Springer,2015:234-241. [14] TONG G,LI Y,CHEN H,et al. Improved U-NET network for pulmonary nodules segmentation[J]. Optik, 2018, 174:460-469. [15] LIU H,CAO H,SONG E M. A cascaded dual-pathway residual network for lung nodule segmentation in CT images[J]. Physica Medica,2019,63:112-121. [16] 张声超. 基于特征融合的肺结节检测关键技术研究[D]. 广州:华南理工大学,2018:33-43. (ZHANG S C. Research on key techniques of pulmonary nodule detection based on feature fusion[D]. Guangzhou:South China University of Technology,2018:33-43.) [17] PAN S J,YANG Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering,2010,22(10):1345-1359. [18] OQUAB M,BOTTOU L,LAPTEV I,et al. Learning and transferring mid-level image representations using convolutional neural networks[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2014:1717-1724. [19] 杨涵方, 周向东. 基于深度稀疏辨别的跨领域图像分类[J]. 计算机工程,2018,44(4):310-316. (YANG H F,ZHOU X D. Cross domain image classification based on deep sparse discrimination[J]. Computer Engineering,2018,44(4):310-316.) [20] 李浩波, 祝忠明, 范治中. 基于深度学习的腺体分化程度自动分类[J]. 信息技术与信息化,2019(6):93-94. (LI H B,ZHU Z M,FAN Z Z. Automatic classification of glandular differentiation based on deep learning[J]. Information Technology and Informatization,2019(6):93-94. [21] 李淼, 王敬贤, 李华龙, 等. 基于CNN和迁移学习的农作物病害识别方法研究[J]. 智慧农业,2019,1(3):46-55.(LI M, WANG J X,LI H L,et al. Method for identifying crop disease based on CNN and transfer learning[J]. Smart Agriculture,2019,1(3):46-55.) [22] 徐胜舟, 程时宇. 基于全卷积神经网络迁移学习的乳腺肿块图像分割[J]. 中南民族大学学报(自然科学版),2019,38(2):278-284. (XU S Z,CHENG S Y. Breast mass image segmentation based on transfer learning of fully convolutional neural networks[J]. Journal of South-Central University for Nationalities (Natural Science Edition),2019,38(2):278-284.) [23] TAJBAKHSH N,SHIN J Y,GURUDU S,et al. Convolutional neural networks for medical image analysis:full training or fine tuning?[J]. IEEE Transactions on Medical Imaging,2016,35(5):1299-1312. [24] 褚晶辉, 吴泽蕤, 吕卫, 等. 基于迁移学习和深度卷积神经网络的乳腺肿瘤诊断系统[J]. 激光与光电子学进展,2018,55(8):No. 081001. (CHU J H,WU Z R,LYU W, et al. Breast cancer diagnosis system based on transfer learning and deep convolutional neural networks[J]. Laser & Optoelectronics Progress,2018,55(8):No. 081001.) [25] SHIN H C,ROTH H R, GAO M,et al. Deep convolutional neural networks for computer-aided detection:CNN architectures,dataset characteristics and transfer learning[J]. IEEE Transactions on Medical Imaging,2016,35(5):1285-1298. [26] SIMONYAN K,ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2018-12-01]. https://arxiv.org/pdf/1409.1556.pdf. [27] HE K,ZHANG X,REN S,et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:770-778. [28] SZEGEDY C,VANHOUCKE V,IOFFE S,et al. Rethinking the inception architecture for computer vision[C]//Proceedings of the 2016 IEEE Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:2818-2826. [29] HUANG G,LIU Z,VAN DER MAATEN L,et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:2261-2269. [30] KINGMA D P,BA J L. Adam:a method for stochastic optimization[EB/OL].[2018-12-01]. https://arxiv.org/pdf/1412.6980.pdf. [31] WANG S,ZHOU M,LIU Z,et al. Central focused convolutional neural network:developing a data-driven mode for lung nodule segmentation[J]. Medical Image Analysis,2017,40:172-183. [32] MILLETARI F,NAVAB N,AHMADI S A. V-Net:fully convolutional neural networks for volumetric medical image segmentation[C]//Proceedings of the 4th International Conference on 3D Vision. Piscataway:IEEE,2016:565-571. |