[1] 王艺颖. 朴素贝叶斯方法在中文文本分类中的应用[J]. 中国高新科技, 2019(7):57-60.(WANG Y Y. Application of naive Bayes method in Chinese text classification[J]. China High-Tech, 2019(7):57-60.) [2] 钟磊. 基于贝叶斯分类器的中文文本分类[J]. 电子技术与软件工程, 2016(22):156-156.(ZHONG L. Chinese text classification based on Bayesian classifier[J]. Electronic Technology and Software Engineering, 2016(22):156-156.) [3] 殷亚博,杨文忠,杨慧婷,等. 基于搜索改进的KNN文本分类算法[J]. 计算机工程与设计, 2018, 39(9):2923-2928.(YIN Y B, YANG W Z, YANG H T, et al. KNN text classification algorithm based on search improvement[J]. Computer Engineering and Design, 2018, 39(9):2923-2928.) [4] LIU J, JIN T, PAN K, et al. An improved KNN text classification algorithm based on Simhash[C]//Proceedings of the IEEE 16th International Conference on Cognitive Informatics and Cognitive Computing. Piscataway:IEEE, 2017:92-95. [5] 郭超磊,陈军华. 基于SA-SVM的中文文本分类研究[J]. 计算机应用与软件, 2019, 36(3):277-281.(GUO C L, CHEN J H. Chinese text classification based on SA-SVM[J]. Computer Applications and Software, 2019, 36(3):277-281.) [6] 姚立,张曦煌. 基于主题模型的改进随机森林算法在文本分类中的应用[J]. 计算机应用与软件, 2017, 34(8):173-178, 212. (YAO L, ZHANG X H. Improved random forests algorithm based on topic model and its application in text classification[J]. Computer Application and Software, 2017, 34(8):173-178, 212.) [7] WEI F, QIN H, YE S, et al. Empirical study of deep learning for text classification in legal document review[C]//Proceedings of the 2018 IEEE International Conference on Big Data. Piscataway:IEEE, 2018:3317-3320. [8] HU F, LI L, ZHANG Z, et al. Emphasizing essential words for sentiment classification based on recurrent neural networks[J]. Journal of Computer Science and Technology, 2017, 32(4):785-795. [9] 冯国明,张晓冬,刘素辉. 基于CapsNet的中文文本分类研究[J]. 数据分析与知识发现, 2019, 2(12):68-76.(FENG G M, ZHANG X D, LIU S H. Classifying Chinese texts with CapsNet[J]. Data Analysis and Knowledge Discovery, 2019, 2(12):68-76.) [10] CHURCH K W. Word2Vec[J]. Natural Language Engineering, 2017, 23(1):155-162. [11] 薛炜明,侯霞,李宁. 一种基于word2vec的文本分类方法[J]. 北京信息科技大学学报(自然科学版), 2018, 33(1):71-75.(XUE W M, HOU X, LI N. A text categorization method based on word2vec[J]. Journal of Beijing Information Science and Technology University, 2018, 33(1):71-75.) [12] ZHAO W, YE J, YANG M, et al. Investigating capsule networks with dynamic routing for text classification[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics, 2018:3110-3119. [13] HINTON G E, KRIZHEVSKY A, WANG S D. Transforming autoencoders[C]//Proceedings of the 21st International Conference on Artificial Neural Networks, LNCS 6791. Berlin:Springer, 2011:44-51. [14] SABOUR S, FROSST N, HINTON G E. Dynamic routing between capsules[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY:Curran Associates Inc., 2017:3856-3866. [15] 朱娟,陈晓. 改进胶囊网络的有序重叠手写数字识别方法[J]. 激光杂志, 2019, 40(7):43-46.(ZHU J, CHEN X. Improved capsule network for recognition of orderly overlapped handwritten numerals[J]. Laser Journal, 2019, 40(7):43-46.) [16] 张天柱,邹承明. 使用模糊聚类的胶囊网络在图像分类上的研究[J]. 计算机科学, 2019, 46(12):279-285.(ZHANG T Z, ZOU C M. Study on image classification of capsule network using fuzzy clustering[J]. Computer Science, 2019, 46(12):279-285.) [17] NOWAK J, TASPRINAR A, SCHERER R. LSTM recurrent neural networks for short text and sentiment classification[C]//Proceedings of the 16th International Conference on Artificial Intelligence and Soft Computing, LNCS 10246. Cham:Springer, 2017:553-562. |