[1] 刘辉,万文,熊震宇. X射线焊缝图像的缺陷检测与识别技术[J]. 电焊机,2017,47(4):89-93.(LIU H, WAN W, XIONG Z Y. Defect detection and recognition technology of X ray weld image[J]. Electric Welding Machine, 2017, 47(4):89-93.) [2] 李雪琴,刘培勇,殷国富,等. 基于Fourier拟合曲面的X射线焊缝缺陷检测[J]. 焊接学报,2014,35(10):61-64.(LI X Q, LIU P Y, YIN G F, et al. Defect detection of X-ray weld based on Fourier fitting surface[J]. Transactions of the China Welding Institution, 2014, 35(10):61-64.) [3] 陈本智,方志宏,夏勇,等. 基于X射线图像的厚钢管焊缝中气孔缺陷的自动检测[J]. 计算机应用, 2017, 37(3):849-853. (CHEN B Z, FANG Z H, XIA Y, et al. Automatic detection of blowholes defects in X-ray images of thick steel pipes[J]. Journal of Computer Applications, 2017, 37(3):849-853.) [4] 刘洁瑜,徐军辉,汪立新. 基于结构信息分布的图像质量评估新算法[J]. 兵工学报, 2010, 31(8):1053-1058.(LIU J Y, XU J H, WANG L X. A novel image quality evaluation method based on structure information distribution[J]. Acta Armamentarii, 2010, 31(8):1053-1058.) [5] ZHAO B, DENG C. Image quality evaluation method based on human visual system[J]. Chinese Journal of Electronics, 2010, 19(1):129-132. [6] 于淼淼,郑元林,廖开阳,等. 基于视觉感知高度相关的图像质量评价[J]. 西安理工大学学报, 2019, 35(2):224-233.(YU M M, ZHENG Y L, LIAO K Y, et al. Image quality evaluation based on high correlation of visual perception[J]. Journal of Xi'an University of Technology, 2019, 35(2):224-233.) [7] WU Q Z, ZHOU J, LIU B. A study on the X-ray image quality evaluation method based on weighted local entropy[J]. Key Engineering Materials, 2011, 467/468/469:462-468. [8] 蒋铭,马兆丰,辛宇, 等. 基于DWT和视觉加权的图像质量评价方法研究[J]. 通信学报,2011, 32(9):129-136.(JIANG M, MA Z F, XIN Y, et al. Image quality evaluation method base on digital wavelet transform and vision weighted[J]. Journal on Communications, 2011, 32(9):129-136.) [9] YANG J, JIANG B, ZHU Y, et al. An image quality evaluation method based on joint deep learning[C]//Proceedings of the 24th International Conference on Neural Information Processing, LNCS 10634. Cham:Springer, 2017:658-665. [10] LIU H, XU F, YANG S, et al. Image quality evaluation metric of brightness contrast[C]//Proceedings of the 18th International Conference on Man-Machine-Environment System Engineering, LNEE 527. Singapore:Springer, 2019:271-279. [11] 胡文瑾,曹欣,叶雨琪. 融合亮度边缘和纹理的图像质量评价[J]. 吉林大学学报(工学版), 2019, 49(1):283-289.(HU W J, CAO X, YE Y Q. Combine edge feature based on luminance component and texture feature for image quality evaluation[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(1):283-289.) [12] 贾惠珍,王同罕,傅鹏. 多特征融合的图像质量评价方法[J]. 模式识别与人工智能,2019,32(7):669-675.(JIA H Z, WANG T H, FU P. Multi-feature fusion based image quality assessment method[J]. Pattern Recognition and Artificial Intelligence, 2019, 32(7):669-675.) [13] 高敏娟,党宏社,魏立力,等. 基于非局部梯度的图像质量评价算法[J]. 电子与信息学报, 2019, 41(5):1122-1129.(GAO M J, DANG H S, WEI L L, et al. Image quality assessment algorithm based on non-local gradient[J]. Journal of Electronics and Information Technology, 2019, 41(5):1122-1129.) [14] 侯春萍,李浩,岳广辉. 局部和全局特征融合的色调映射图像质量评价[J]. 湖南大学学报(自然科学版), 2019, 46(8):132-140.(HOU C P, LI H, YUE G H. Quality assessment of tonemapped images using local and global features[J]. Journal of Hunan University (Natural Science), 2019, 46(8):132-140.) [15] 校嘉蔚,张选德. 基于非线性高斯平均差分的图像质量评价[J]. 陕西科技大学学报, 2019, 37(5):163-170.(XIAO J W, ZHANG X D. Image quality assessment based on nonlinear gaussian mean difference[J]. Journal of Shaanxi University of Science and Technology, 2019, 37(5):163-170.) [16] 沈丽丽,杭宁. 联合多种边缘检测算子的无参考质量评价算法[J]. 工程科学学报, 2018, 40(8):996-1004.(SHEN L L, HANG N. No-reference image quality assessment using joint multiple edge detection[J]. Chinese Journal of Engineering, 2018, 40(8):996-1004.) [17] 齐亚欣,陈嵩. 一种基于多元回归的射线数字图像影响因子的权重分配方法[J]. 无损检测, 2018, 40(8):6-9.(QI Y X, CHEN S. A weight assignment method for influencing factors of radiographic digital images based on multiple regression[J]. Nondestructive Testing, 2018, 40(8):6-9.) [18] 李毅红,韩焱,潘晋孝,等. 基于递变能量线性约束的X射线图像质量评价方法[J]. 电子学报, 2017,45(3):669-673.(LI Y H, HAN Y, PAN J X, et al. X-ray image quality evaluation based on linear constraint with variable energy[J]. Acta Electronica Sinica, 2017, 45(3):669-673.) [19] 周永春,戴敬东. ASME第V卷关于射线底片黑度的有关规定及应用[J]. 无损探伤, 2012, 36(6):26-28.(ZHOU Y C, DAI J D. Related regulations and application of blackness of ray negatives in ASME Vol. V[J]. Nondestructive Testing Technology, 2012, 36(6):26-28.) |