Journal of Computer Applications ›› 2020, Vol. 40 ›› Issue (9): 2748-2753.DOI: 10.11772/j.issn.1001-9081.2019122252

• Virtual reality and multimedia computing • Previous Articles     Next Articles

Image quality evaluation model for X-ray circumferential welds

WANG Siyu1,2, GAO Weixin1,2, LI Lu1,2   

  1. 1. Shaanxi Key Laboratory of Measurement and Control Technology for Oil and Gas Wells(Xi'an Shiyou University), Xi'an Shaanxi 710065, China;
    2. Key Laboratory of Photoelectric Logging and Detecting of Oil and Gas of Ministry of Education(Xi'an Shiyou University), Xi'an Shaanxi 710065, China
  • Received:2020-01-09 Revised:2020-03-12 Online:2020-09-10 Published:2020-04-13
  • Supported by:
    This work is partially supported by the Xi'an Shiyou University Graduate Innovation and Practice Ability Training Project (YCS19213092), the Shaanxi Industrial Key Project (2020GY-179).

环口焊X射线焊缝图像质量评定模型

王思宇1,2, 高炜欣1,2, 李璐1,2   

  1. 1. 陕西省油气井测控技术重点实验室(西安石油大学), 西安 710065;
    2. 光电油气测井与检测教育部重点实验室(西安石油大学), 西安 710065
  • 通讯作者: 高炜欣
  • 作者简介:王思宇(1996-),男,江苏徐州人,硕士研究生,主要研究方向:缺陷识别、图像处理;高炜欣(1973-),男,陕西榆林人,教授,博士,主要研究方向:图像与信号处理、电气工程及其自动化;李璐(1995-),男,陕西渭南人,硕士研究生,主要研究方向:图像处理、模式识别。
  • 基金资助:
    西安石油大学研究生创新与实践能力培养项目(YCS19213092);陕西省工业攻关项目(2020GY-179)。

Abstract: Automatic evaluation of X-ray weld image quality is an important foundation for automatic evaluation of weld image defects. A digital blackness meter model was proposed to realize the automatic evaluation of X-ray weld image quality. Firstly, in order to obtain the physical blackness by numerical calculation, the physical illumination model and the weld blackness model were combined by the digital blackness meter model. Then, through the analysis of the correlation between the physical blackness value of the sample image and the corresponding grayscale value, a method for obtaining the parameters of the digital blackness meter model was given. Finally, an X-ray weld film blackness automatic evaluation algorithm was proposed. The experiments on the actual X-ray weld images show that, the accuracy of the proposed algorithm can reach 99% without manual intervention. The cross-validation experiments show that the sensitivity of the proposed method is 98.5% and the specificity of the method can reach 100%. The digital blackness meter model based on illumination model and blackness model as well as the solving algorithm can replace the commonly used physical blackness meter and realize the automation of weld image quality evaluation.

Key words: X-ray weld image, defect detection, digital blackness meter, image quality evaluation

摘要: X射线焊缝图像质量自动评定是焊缝图像缺陷自动评定的重要基础。为实现X射线焊缝图像质量自动评定,提出了一种数字化黑度计模型。首先,为使该模型通过数字计算即可获得物理黑度值,数字黑度计模型同时融合了物理光照模型和焊缝黑度模型;然后,通过对样本图像的物理黑度值及对应灰度值的相关性分析,给出了数字化黑度计模型的参数求取方法;最后,提出了一种X射线焊缝底片黑度自动评定算法。在实际X射线焊缝图像上的实验结果表明,在完全无人工干预的情况下,所提算法的准确率可达99%。交叉验证实验表明,所提方法敏感度可达98.5%,特异度可达100%。基于光照模型和黑度模型的数字化黑度计模型及求解算法可以取代目前常用的物理黑度计,实现焊缝图像质量评定的自动化。

关键词: X射线焊缝图像, 缺陷检测, 数字化黑度计, 图像质量评价

CLC Number: