[1] YOUNG S, GAŠIĆ M, THOMSON B, et al. POMDP-based statistical spoken dialog systems:a review[J]. Proceedings of the IEEE,2013,101(5):1160-1179. [2] PEREZ-MARIN D,PASCUAL-NIETO I. Conversational Agents and Natural Language Interaction:Techniques and Effective Practices[M]. Hershey,PA:IGI Global,2011:1-22. [3] 上官霞. 人工智能技术在福建省电力营业厅中的应用探讨[J]. 通讯世界,2018(1):234-235.(SHANGGUAN X,Discussion on application of artificial intelligence technology in Fujian electric power business hall[J]. Telecom World,2018(1):234-235.) [4] CHEN H,LIU X,YIN D,et al. A survey on dialogue systems:recent advances and new frontiers[J]. ACM SIGKDD Explorations Newsletter,2017,19(2):25-35. [5] KIM Y. Convolutional neural networks for sentence classification[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg,PA:Association for Computational Linguistics,2014:1746-1751. [6] ELMAN J L. Finding structure in time[J]. Cognitive Science, 1990,14(2):179-211. [7] JOULIN A,GRAVE E,BOJANOWSKI P,et al. Bag of tricks for efficient text classification[C]//Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics,2017:427-431. [8] LAI S,XU L,LIU K,et al. Recurrent convolutional neural networks for text classification[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press, 2015:2267-2273. [9] RAMANAND J, BHAVSAR K, PEDANEKAR N. Wishful thinking:finding suggestions and'buy'wishes from product reviews[C]//Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text. Stroudsburg,PA:Association for Computational Linguistics, 2010:54-61. [10] LI X,ROTH D. Learning question classifiers:the role of semantic information[J]. Natural Language Engineering,2006,12(3):229-249. [11] GENKIN A,LEWIS D D,MADIGAN D. Large-scale Bayesian logistic regression for text categorization[J]. Technometrics, 2007,49(3):291-304. [12] HAFFNER P,TUR G,WRIGHT J H. Optimizing SVMs for complex call classification[C]//Proceedings of the 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing. Piscataway:IEEE,2003:I-I. [13] MCCALLUM A,NIGAM K. A comparison of event models for naive Bayes text classification[C]//Proceedings of the AAAI/ICML 1998 Workshop on Learning for Text Categorization. Palo Alto, CA:AAAI Press,1998:41-48. [14] SCHAPIRE R E, SINGER Y. BoosTexter:a boosting-based system for text categorization[J]. Machine Learning,2000,39(2/3):135-168. [15] YANG Y,PEDERSEN J O. A comparative study on feature selection in text categorization[C]//Proceedings of the 14th International Conference on Machine Learning. Burlington,MA:Morgan Kaufmann Publishers Inc.,1997:412-420. [16] JOACHIMS T. Text categorization with support vector machines:Learning with many relevant features[C]//Proceedings of the 10th European Conference on Machine Learning,LNCS 1398. Berlin:Springer,1998:137-142. [17] BENGIO Y,DUCHARME R,VINCENT P,et al. A neural probabilistic language model[J]. Journal of Machine Learning Research,2003,3:1137-1155. [18] HOCHREITER S,SCHMIDHUBER J. Long short-term memory[J]. Neural Computation,1997,9(8):1735-1780. [19] CHO K,VAN MERRIËNBOER,GULCEHRE C,et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics,2014:1724-1734. [20] BAHDANAU D,CHO K,BENGIO Y. Neural machine translation by jointly learning to align and translate[EB/OL].[2020-01-12]. https://arxiv.org/pdf/1409.0473.pdf. [21] 杨志明, 王来奇, 王泳. 深度学习算法在问句意图分类中的应用研究[J]. 计算机工程与应用,2019,55(10):154-160. (YANG Z M,WANG L Q,WANG Y. Application research of deep learning algorithm in question intention classification[J]. Computer Engineering and Applications, 2019, 55(10):154-160.) [22] 杨志明, 王来奇, 王泳. 基于双通道卷积神经网络的问句意图分类研究[J]. 中文信息学报,2019,33(5):122-131.(YANG Z M,WANG L Q,WANG Y. Questions intent classification based on dual channel convolutional neural network[J]. Journal of Chinese Information Processing,2019,33(5):122-131.) [23] 周俊佐, 朱宗奎, 何正球, 等. 面向人机对话意图分类的混合神经网络模型[J]. 软件学报,2019,30(11):3313-3325.(ZHOU J Z,ZHU Z K,HE Z Q,et al. Hybrid neural network models for human-machine dialogue intention classification[J]. Journal of Software,2019,30(11):3313-3325.) [24] 孙鑫, 王厚峰. 问答中的问句意图识别和约束条件分析[J]. 中文信息学报,2017, 31(6):132-139.(SUN X,WANG H F. Intent determination and slot filling in question answering[J]. Journal of Chinese Information Processing, 2017, 31(6):132-139.) [25] DING X,CAI B,LIU T,et al. Domain adaptation via tree kernel based maximum mean discrepancy for user consumption intention identification[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. Palo Alto, CA:AAAI Press,2018:4026-4032. [26] MIKOLOV T,CHEN K,CORRADO G,et al. Efficient estimation of word representations in vector space[EB/OL].[2020-01-12]. https://arxiv.org/pdf/1301.3781.pdf. |