[1] WONG A,FAMUORI M,SHAFIEE M J,et al. YOLO Nano:a highly compact You Only Look Once convolutional neural network for object detection[EB/OL].[2019-10-24]. https://arxiv.org/pdf/1910.01271.pdf. [2] 于秀萍, 吕淑平, 陈志韬. 基于YOLO算法的多类目标识别[J]. 实验室研究与探索,2019,38(3):34-36,76.(YU X P,LYU S P,CHEN Z T. Multi-object recognition based on YOLO algorithm[J]. Research and Exploration in Laboratory,2019,38(3):34-36,76.) [3] LIU Z,LI J,SHEN Z,et al. Learning efficient convolutional networks through network slimming[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE,2017:2755-2763. [4] STOCK P,JOULIN A,GRIBONVAL R,et al. And the bit goes down:revisiting the quantization of neural networks[EB/OL].[2019-12-24]. https://arxiv.org/pdf/1907.05686.pdf. [5] HAN S,MAO H,DALLY W J. Deep compression:compressing deep neural networks with pruning, trained quantization and Huffman coding[EB/OL].[2019-08-22]. https://arxiv.org/pdf/1510.00149.pdf. [6] DENIL M,SHAKIBI B,DINH L,et al. Predicting parameters in deep learning[C]//Proceeding of the 26th International Conference on Neural Information Processing Systems. Red Hook,NY:Curran Associates Inc.,2013:2148-2156. [7] 程龙, 刘洋. 脉冲神经网络:模型、学习算法与应用[J]. 控制与决策,2018,33(5):923-937.(CHENG L,LIU Y. Spiking neural networks:model,learning algorithms and applications[J]. Control and Decision,2018,33(5):923-937.) [8] SUN M,CHEN X,ZHU Y,et al. Neural network model combined with pupil recovery for Fourier ptychographic microscopy[J]. Optics Express,2019,27(17):24161-24174. [9] VOGELS T P,RAJAN K,ABBOTT L F. Neural network dynamics[J]. Annual Review of Neuroscience,2005,28:357-376. [10] 陈莉君, 李卓. 基于深度神经压缩的YOLO加速研究[J]. 现代计算机,2019(11):3-7.(CHEN L J,LI Z. Research on YOLO acceleration based on deep compression[J]. Modern Computer, 2019(11):3-7.) [11] 雷杰, 高鑫, 宋杰, 等. 深度网络模型压缩综述[J]. 软件学报, 2018,29(2):251-266.(LEI J,GAO X,SONG J,et al. Survey of deep neural network model compression[J]. Journal of Software,2018,29(2):251-266.) [12] 谢斌红, 钟日新, 潘理虎, 等. 结合剪枝与流合并的卷积神经网络加速压缩方法[J]. 计算机应用,2020,40(3):621-625. (XIE B H, ZHONG R X, PAN L H, et al. Accelerated compression method for convolutional neural networks combining with pruning and stream merging[J]. Journal of Computer Applications,2020,40(3):621-625.) [13] WU C W. ProdSumNet:reducing model parameters in deep neural networks via product-of-sums matrix decompositions[EB/OL].[2019-10-08]. https://arxiv.org/pdf/1809.02209.pdf. [14] GUO Y,YAO A,CHEN Y. Dynamic network surgery for efficient DNNs[C]//Proceeding of the 30th International Conference on Neural Information Processing Systems. Red Hook,NY:Curran Associates Inc.,2016:1379-1387. [15] CHENG Y,WANG D,ZHOU P,et al. A survey of model compression and acceleration for deep neural networks[EB/OL].[2019-09-11]. https://arxiv.org/pdf/1710.09282.pdf. [16] LIAO S,XIE Y,LIN X,et al. Reduced-complexity deep neural networks design using multi-level compression[J]. IEEE Transactions on Sustainable Computing,2019,4(2):245-251. [17] GONG Y, LIU L, YANG M, et al. Compressing deep convolutional networks using vector quantization[EB/OL].[2019-08-20]. https://arxiv.org/pdf/1412.6115.pdf. [18] HINTON G,VINYALS O,DEAN J. Distilling the knowledge in a neural network[EB/OL].[2019-08-18]. https://arxiv.org/pdf/1503.02531.pdf. [19] REDMON J,DIVVALA S,GIRSHICK R,et al. You only look once:Unified,real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:779-788. [20] REDMON J,FARHADI A. YOLO9000:better,faster,stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:6517-6525. [21] REDMON J,FARHADI A. YOLOv3:an incremental improvement[EB/OL].[2019-02-14]. https://arxiv.org/pdf/1804.02767.pdf. |