[1] 第七届"泰迪杯"数据挖掘挑战赛——B题:直肠癌淋巴结转移的智能诊断[EB/OL].[2019-04-13].http://www.tipdm.org/u/cms/www/201903/15214944i2k3.pdf. (The Seventh "Teddy Cup" Data Mining Challenge Competition-intelligent diagnosis of lymph node metastasis in rectal cancer[EB/OL].[2020-01-10].http://www.tipdm.org/u/cms/www/201903/15214944i2k3.pdf.) [2] SIEGEL R L, MILLER K D, SAUER A G, et al. Colorectal cancer statistics, 2020[J]. CA:A Cancer Journal for Clinicians, 2020, 70(3):145-164. [3] KOLLIGS F T. Diagnostics and epidemiology of colorectal cancer[J]. Visceral Medicine, 2016, 32(3):158-164. [4] RONNEBERGER O, FISCHER P, BROX T. U-Net:convolutional networks for biomedical image segmentation[C]//Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham:Springer, 2015:234-241. [5] ZHOU Z, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. UNet++:a nested U-Net architecture for medical image segmentation[C]//Proceedings of the 2018 International Workshop on Deep Learning in Medical Image Analysis, 2018 International Workshop on Multimodal Learning for Clinical Decision, LNCS 11045. Cham:Springer, 2018:3-11.) [6] ALOM M Z, YAKOPCIC C, TAHA T M, et al. Nuclei segmentation with Recurrent Residual convolutional neural networks based U-Net (R2U-Net)[C]//Proceedings of the 2018 IEEE National Aerospace and Electronics Conference. Piscataway:IEEE, 2018:228-233. [7] OKTAY O, SCHLEMPER J, LE FOLGOC L, et al. Attention U-Net:Learning where to look for the pancreas[EB/OL].[2019-04-13].https://arxiv.org/pdf/1804.03999.pdf. [8] AZAD R, ASADI-AGHBOLAGHI M, FATHY M, et al. Bi-directional ConvLSTM U-Net with densley connected convolutions[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop. Piscataway:IEEE, 2019:406-415. [9] KAUL C, MANANDHAR S, PEARS N. FocusNet:an attention-based fully convolutional network for medical image segmentation[C]//Proceedings of the IEEE 16th International Symposium on Biomedical Imaging. Piscataway:IEEE, 2019:455-458. [10] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:770-778. [11] LI X, CHEN H, QI X, et al. H-DenseUNet:hybrid densely connected UNet for liver and tumor segmentation from CT volumes[J]. IEEE Transactions on Medical Imaging, 2018, 37(12):2663-2674. [12] MOHAMMED A K, YILDIRIM-YAYILGAN S, FARUP I, et al. Y-Net:a deep convolutional neural network for polyp detection[C]//Proceedings of the 29th British Machine Vision Conference. Durham:BMVA Press, 2018:No.487. [13] KAUL C, PEARS N, MANANDHAR S. Divided we stand:a novel residual group attention mechanism for medical image segmentation[EB/OL].[2020-03-17].https://arxiv.org/pdf/1912.02079.pdf. [14] LITJENS G, KOOI T, BEJNORDI B E, et al. A survey on deep learning in medical image analysis[J]. Medical Image Analysis, 2017, 42:60-88. [15] TAJBAKHSH N, JEYASEELAN L, LI Q, et al. Embracing imperfect datasets:a review of deep learning solutions for medical image segmentation[J]. Medical Image Analysis, 2020, 63:No.101693. [16] TAGHANAKI S A, ABHISHEK K, COHEN J P, et al. Deep semantic segmentation of natural and medical images:a review[EB/OL].[2020-03-17].https://arxiv.org/pdf/1910.07655.pdf. [17] IRVING B, CIFOR A, PAPIEŻ B W, et al. Automated colorectal tumour segmentation in DCE-MRI using supervoxel neighbourhood contrast characteristics[C]//Proceedings of the 2014 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 8673. Cham:Springer, 2014:609-616. [18] VAN HEESWIJK M M, LAMBREGTS D M J, VAN GRIETHUYSEN J J M, et al. Automated and semiautomated segmentation of rectal tumor volumes on diffusion-weighted MRI:can it replace manual volumetry?[J]. International Journal of Radiation Oncology Biology Physics, 2016, 94(4):824-831. [19] SOOMRO M H, GIUNTA G, LAGHI A, et al. Segmenting MR images by level-set algorithms for perspective colorectal cancer diagnosis[C]//Proceedings of the 2017 European Congress on Computational Methods in Applied Sciences and Engineering, LNCVB 27. Cham:Springer, 2017:396-406. [20] 冉昭,简俊明,王蒙蒙,等. 基于全卷积神经网络的直肠癌肿瘤磁共振影像自动分割方法[J].北京生物医学工程, 2019, 38(5):465-471. (RAN Z, JIAN J M, WANG M M, et al. Automatic segmentation method based on full convolution neural network for rectal cancer tumors in magnetic resonance image[J]. Beijing Biomedical Engineering, 2019, 38(5):465-471.) [21] 段杰,崔志明,沈艺,等. 一种改进FCN的肝脏肿瘤CT图像分割方法[J]. 图形学报, 2020, 41(1):100-107. (DUAN J, CUI Z M, SHEN Y, et al. A CT image segmentation method for liver tumor by an improved FCN[J]. Journal of Graphics, 2020, 41(1):100-107.) [22] TREBESCHI S, VAN GRIETHUYSEN J J M, LAMBREGTS D M J, et al. Deep learning for fully-automated localization and segmentation of rectal cancer on multiparametric MR[J]. Scientific Reports,2017, 7(1):No.5301. [23] WANG J, LU J, QIN G, et al. Technical note:a deep learning-based auto segmentation of rectal tumors in MR images[J]. Medical Physics, 2018, 45(6):2560-2564. [24] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO:common objects in context[C]//Proceedings of 2014 European Conference on Computer Vision, LNCS 8693. Cham:Springer, 2014:740-755. [25] DUBEY S R, CHAKRABORTY S, ROY S K, et al. diffGrad:an optimization method for convolutional neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019(Early Access):1-12. [26] SUTSKEVER I, MARTENS J, DAHL G, et al. On the importance of initialization and momentum in deep learning[C]//Proceedings of the 30th International Conference on Machine Learning. New York:JMLR.org, 2013:1139-1147. [27] ZEILER D Z. ADADELTA:an adaptive learning rate method[EB/OL].[2020-03-17].https://arxiv.org/pdf/1212.5701.pdf. [28] DUCHI J, HAZAN E, SINGER Y. Adaptive subgradient methods for online learning and stochastic optimization[J]. The Journal of Machine Learning Research, 2011, 12:2121-2159. [29] HINTON G, SRIVASTAVA N, SWERSKY K. Neural networks for machine learning:lecture 6a overview of mini-batch gradient descent[EB/OL].[2020-03-17].https://www.cs.toronto.edu/~hinton/coursera/lecture6/lec6.pdf. [30] REDDI S J, KALE S, KUMAR S. On the convergence of Adam and beyond[EB/OL].[2020-03-17].https://arxiv.org/pdf/1904.09237.pdf. [31] KINGMA D P, BA J L. Adam:a method for stochastic optimization[EB/OL].[2020-03-17].https://arxiv.org/pdf/1412.6980.pdf. |