Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (7): 2301-2309.DOI: 10.11772/j.issn.1001-9081.2023060808
• Frontier and comprehensive applications • Previous Articles Next Articles
Minghao SUN1, Han YU1(), Yuqing CHEN2, Kai LU3
Received:
2023-06-26
Revised:
2023-08-20
Accepted:
2023-08-24
Online:
2023-08-28
Published:
2024-07-10
Contact:
Han YU
About author:
SUN Minghao, born in 1998, M. S. candidate. His research interests include signal and image processing.Supported by:
通讯作者:
余瀚
作者简介:
孙明皓(1998—),男,江苏南京人,硕士研究生,主要研究方向:信号与图像处理;基金资助:
CLC Number:
Minghao SUN, Han YU, Yuqing CHEN, Kai LU. First-arrival picking and inversion of seismic waveforms based on U-shaped multilayer perceptron network[J]. Journal of Computer Applications, 2024, 44(7): 2301-2309.
孙明皓, 余瀚, 陈雨青, 陆恺. 基于U形多层感知机网络的地震波初至拾取与反演[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2301-2309.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023060808
数据集 | 模型 | Max_diff_fb | Min_diff_fb | Mean_diff_fb |
---|---|---|---|---|
训练集 | U-Net | 20.45 | 0.500 0 | 6.397 |
U-MLP网络 | 15.60 | 0.350 0 | 5.213 | |
验证集 | U-Net | 20.23 | 0.416 7 | 9.458 |
U-MLP网络 | 15.14 | 0.364 7 | 8.438 | |
测试集 | U-Net | 20.16 | 0.784 3 | 10.180 |
U-MLP网络 | 15.84 | 0.571 1 | 8.279 |
Tab. 1 Error comparison of first arrivals picked by different network models
数据集 | 模型 | Max_diff_fb | Min_diff_fb | Mean_diff_fb |
---|---|---|---|---|
训练集 | U-Net | 20.45 | 0.500 0 | 6.397 |
U-MLP网络 | 15.60 | 0.350 0 | 5.213 | |
验证集 | U-Net | 20.23 | 0.416 7 | 9.458 |
U-MLP网络 | 15.14 | 0.364 7 | 8.438 | |
测试集 | U-Net | 20.16 | 0.784 3 | 10.180 |
U-MLP网络 | 15.84 | 0.571 1 | 8.279 |
数据集 | 模型 | IoU指标 |
---|---|---|
训练集 | U-Net | 0.975 6 |
U-MLP网络 | 0.994 5 | |
验证集 | U-Net | 0.973 2 |
U-MLP网络 | 0.994 1 | |
测试集 | U-Net | 0.975 4 |
U-MLP网络 | 0.993 9 |
Tab. 2 IoU comparison between different network models
数据集 | 模型 | IoU指标 |
---|---|---|
训练集 | U-Net | 0.975 6 |
U-MLP网络 | 0.994 5 | |
验证集 | U-Net | 0.973 2 |
U-MLP网络 | 0.994 1 | |
测试集 | U-Net | 0.975 4 |
U-MLP网络 | 0.993 9 |
1 | ARAYA-POLO M, JENNINGS J, ADLER A, et al. Deep-learning tomography [J]. The Leading Edge, 2018, 37(1): 58-66. |
2 | BOSCHETTI F, DENTITH M D, LIST R D. A fractal-based algorithm for detecting first arrivals on seismic traces [J]. Geophysics, 1996, 61(4): 1095-1102. |
3 | ALLEN R V. Automatic earthquake recognition and timing from single traces [J]. Bulletin of the Seismological Society of America, 1978, 68(5): 1521-1532. |
4 | 潘树林,高磊,陈辉,等.可控震源地震记录初至拾取方法研究[J].石油物探, 2010, 49(2): 209-212. |
PAN S L, GAO L, CHEN H, et al. Study on methods for picking up first break of seismic record acquired by vibroseis [J]. Geophysical Prospecting for Petroleum, 2010, 49(2): 209-212. | |
5 | GACI S. The use of wavelet-based denoising techniques to enhance the first-arrival picking on seismic traces [J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 4558-4563. |
6 | 许银坡,杨海申,杨剑,等.初至波能量比迭代拾取方法[J].地球物理学进展, 2016, 31(2): 845-850. |
XU Y P, YANG H S, YANG J, et al. Iteration pickup method of first break using energy ratio [J]. Progress in Geophysics, 2016, 31(2): 845-850. | |
7 | AKRAM J, EATON D W. A review and appraisal of arrival-time picking methods for downhole microseismic data [J]. Geophysics, 2016, 81(2): KS71-KS91. |
8 | HOLLANDER Y, MEROUANE A, YILMAZ O. Using a deep convolutional neural network to enhance the accuracy of first-break picking [C]// Proceedings of the 88th SEG International Exposition and Annual Meeting. Tulsa, Oklahoma: Society of Exploration Geophysicists, 2018: 4628-4632. |
9 | CHEN Y. Automatic microseismic event picking via unsupervised machine learning [J]. Geophysical Journal International, 2020, 222(3): 1750-1764. |
10 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [J]. Communications of the ACM, 2017, 60(6): 84-90. |
11 | LeCUN Y, BENGIO Y, HINTON G. Deep learning [J]. Nature, 2015, 521(7553): 436-444. |
12 | LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 3431-3440. |
13 | RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation [C]// Proceedings of the 2015 Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241. |
14 | WU H, ZHANG B, LI F, et al. Semiautomatic first-arrival picking of microseismic events by using the pixel-wise convolutional image segmentation method [J]. Geophysics, 2019, 84(3): V143-V155. |
15 | 丁建群,何永清,郭锐,等.基于U-Net网络的地震数据初至自动拾取方法[C]// 2019油气地球物理学术年会论文集.南京:中国地球物理学会油气地球物理专业委员会, 2019: 132-136. |
DING J Q, HE Y Q, GUO R, et al. Automatic first break pickup method of seismic data based on U-Net network [C]// Proceedings of the 2019 Annual Oil and Gas Geophysics Conference. Nanjing: Chinese Geophysical Society, Committee on Oil and Gas Geophysics, 2019: 132-136. | |
16 | 李薇薇,龚仁彬,周相广,等.基于深度学习UNet++网络的初至波拾取方法[J].地球物理学进展, 2021, 36(1): 187-194. |
LI W W, GONG R B, ZHOU X G, et al. UNet++: a deep-neural-network-based seismic arrival time picking method [J]. Progress in Geophysics, 2021, 36(1): 187-194. | |
17 | 刘志文,王进强,王广鑫.基于UNet++的地震P波初至拾取研究[J].太原理工大学学报, 2023, 54(1): 65-72. |
LIU Z W, WANG J Q, WANG G X. Research on first-arrival picking of seismic P-wave based on UNet++ [J]. Journal of Taiyuan University of Technology, 2023, 54(1): 65-72. | |
18 | 胡婷,徐彬,王永发,等.基于U-Net的矿山微震初至拾取研究[J].科学技术与工程, 2023, 23(16): 6802-6809. |
HU T, XU B, WANG Y F, et al. Arrival picking of mine microseismic events using U-Net [J]. Science Technology and Engineering, 2023, 23(16): 6802-6809. | |
19 | BERMAN M, TRIKI A R, BLASCHKO M B. The Lovász-Softmax loss: a tractable surrogate for the optimization of the intersection-over-union measure in neural networks [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4413-4421. |
20 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. |
21 | TOLSTIKHIN I O, HOULSBY N, KOLESNIKOV A, et al. MLP-Mixer: an all-MLP architecture for vision [J]. Advances in Neural Information Processing Systems, 2021, 34: 24261-24272. |
22 | TOUVRON H, BOJANOWSKI P, CARON M, et al. ResMLP: feedforward networks for image classification with data-efficient training [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(4): 5314-5321. |
23 | YU T, LI X, CAI Y, et al. S2-MLP: Spatial-shift MLP architecture for vision [C]// Proceedings of the 2022 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2022: 3615-3624. |
24 | LIAN D, YU Z, SUN X, et al. AS-MLP: an axial shifted MLP architecture for vision [EB/OL]. (2022-05-17) [2023-05-21]. . |
25 | 南京邮电大学.一种基于U-MLP网络的勘探数据初至拾取方法: CN202210938581.8 [P]. 2022-11-08. |
Nanjing University of Posts and Telecommunications. A method for picking up first breaks in exploration data based on U-MLP network: CN202210938581.8 [P]. 2022-11-08. | |
26 | CAO H, WANG Y, CHEN J, et al. Swin-Unet: Unet-like pure Transformer for medical image segmentation [C]// Proceedings of the Computer Vision-ECCV 2022 Workshops. Cham: Springer, 2023: 205-218. |
27 | HOWARD A G, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications [EB/OL]. (2017-04-17) [2023-05-27]. . |
28 | XIE E, WANG W, YU Z, et al. SegFormer: simple and efficient design for semantic segmentation with Transformers [J]. Advances in Neural Information Processing Systems, 2021, 34: 12077-12090. |
29 | CHENG J, PAN S. U-Net first-arrival picking optimization method based on traces connectivity [C]// Proceedings of the SEG 4th International Workshop on Mathematical Geophysics: Traditional & Learning. Tulsa, Oklahoma: Society of Exploration Geophysicists, 2022: 119-121. |
[1] | Yanran SHEN, Xin WEN, Jinhao ZHANG, Shuai ZHANG, Rui CAO, Baolu GAO. fMRI brain age prediction model with lightweight multi-scale convolutional network [J]. Journal of Computer Applications, 2024, 44(12): 3949-3957. |
[2] | Hui ZHOU, Yuling CHEN, Xuewei WANG, Yangwen ZHANG, Jianjiang HE. Deep shadow defense scheme of federated learning based on generative adversarial network [J]. Journal of Computer Applications, 2024, 44(1): 223-232. |
[3] | Gan LI, Mingdi NIU, Lu CHEN, Jing YANG, Tao YAN, Bin CHEN. Robotic grasp detection in low-light environment by incorporating visual feature enhancement mechanism [J]. Journal of Computer Applications, 2023, 43(8): 2564-2571. |
[4] | Liyao FU, Mengxiao YIN, Feng YANG. Transformer based U-shaped medical image segmentation network: a survey [J]. Journal of Computer Applications, 2023, 43(5): 1584-1595. |
[5] | Yang LIU, Zhiyang LU, Jun WANG, Jun SHI. Gibbs artifact removal algorithm for magnetic resonance imaging based on self-attention connection UNet [J]. Journal of Computer Applications, 2023, 43(5): 1606-1611. |
[6] | Rongjun CHEN, Xuanhui YAN, Chaocheng YANG. Fusion imaging-based recurrent capsule classification network for time series [J]. Journal of Computer Applications, 2023, 43(3): 692-699. |
[7] | Jinwei PU, Qingjian GAO, Xin ZHENG, Yinghui XU. SM4 resistant differential power analysis lightweight threshold implementation [J]. Journal of Computer Applications, 2023, 43(11): 3490-3496. |
[8] | Jie WU, Shitian ZHANG, Haibin XIE, Guang YANG. Semi-supervised knee abnormality classification based on multi-imaging center MRI data [J]. Journal of Computer Applications, 2022, 42(1): 316-324. |
[9] | Hongfei JIA, Xi LIU, Yu WANG, Hongbing XIAO, Suxia XING. Application of 3DPCANet in image classification of functional magnetic resonance imaging for Alzheimer’s disease [J]. Journal of Computer Applications, 2022, 42(1): 310-315. |
[10] | ZHANG Xiaofei, YANG Yang, HUANG Jiajin, ZHONG Ning. Degree centrality based method for cognitive feature selection [J]. Journal of Computer Applications, 2021, 41(9): 2767-2772. |
[11] | ZHU Cheng, ZHAO Xiaoqi, ZHAO Liping, JIAO Yuhong, ZHU Yafei, CHENG Jianying, ZHOU Wei, TAN Ying. Classification of functional magnetic resonance imaging data based on semi-supervised feature selection by spectral clustering [J]. Journal of Computer Applications, 2021, 41(8): 2288-2293. |
[12] | HUANG Li, LU Long. Segmentation of ischemic stroke lesion based on long-distance dependency encoding and deep residual U-Net [J]. Journal of Computer Applications, 2021, 41(6): 1820-1827. |
[13] | KONG Lingxu, WU Haifeng, ZENG Yu, LU Xiaoling. Diagnosis of mild cognitive impairment using deep learning and brain functional connectivities with different frequency dimensions [J]. Journal of Computer Applications, 2021, 41(2): 590-597. |
[14] | ZHUO Yuxin, HAN Suya, ZHANG Yufeng, LI Zhiyao, DONG Yifeng. Automatic segmentation method of microwave ablation region based on Nakagami parameters images of ultrasonic harmonic envelope [J]. Journal of Computer Applications, 2021, 41(10): 3089-3096. |
[15] | ZHU Lin, YU Haitao, LEI Xinyu, LIU Jing, WANG Ruofan. Brain network feature identification algorithm for Alzheimer's patients based on MRI image [J]. Journal of Computer Applications, 2020, 40(8): 2455-2459. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||