[1] KNOLL F,ZBONTAR J,SRIRAM A,et al. fastMRI:a publicly available raw k-space and DICOM dataset of knee images for accelerated MR image reconstruction using machine learning[J]. Radiology:Artificial Intelligence,2020,2(1):No. e190007. [2] EO T,JUN Y,KIM T,et al. KIKI-net:cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images[J]. Magnetic Resonance in Medicine,2018,80(5):2188-2201. [3] TAN E T,LEE S K,WEAVERS P T,et al. High slew-rate headonly gradient for improving distortion in echo planar imaging:Preliminary experience[J]. Journal of Magnetic Resonance Imaging,2016,44(3):653-664. [4] KNOLL F,HAMMERNIK K,ZHANG C,et al. Deep-learning methods for parallel magnetic resonance imaging reconstruction:a survey of the current approaches,trends,and issues[J]. IEEE Signal Processing Magazine,2020,37(1):128-140. [5] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory,2006,52(4):1289-1306. [6] LUSTIG M,DONOHO D L,SANTOS J M,et al. Compressed sensing MRI[J]. IEEE Signal Processing Magazine,2008,25(2):72-82. [7] 陈兵. 基于压缩感知的快速核磁成像算法研究[D]. 成都:电子科技大学,2016:11-23.(CHEN B. A research of rapid magnetic resonance imaging based on compressed sensing[D]. Chengdu:University of Electronic Science and Technology of China,2016:11-23.) [8] BLOCK K T,UECKER M,FRAHM J. Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint[J]. Magnetic Resonance in Medicine,2007, 57(6):1086-1098. [9] 晏士友. 基于全变分的并行磁共振图像重建的快速算法研究[D]. 南京:南京邮电大学,2018:43-49.(YAN S Y. Fast algorithm for parallel magnetic resonance image reconstruction based on total variations model[D]. Nanjing:Nanjing University of Posts and Telecommunications,2018:43-49.) [10] HONG M,YU Y,WANG H,et al. Compressed sensing MRI with singular value decomposition-based sparsity basis[J]. Physics in Medicine and Biology,2011,56(19):6311-6325. [11] 李国燕, 侯向丹, 周博君, 等. 基于离散剪切波的压缩感知MRI图像重建[J]. 计算机应用研究,2013,30(6):1895-1898.(LI G Y,HOU X D,ZHOU B J,et al. Reconstruction of compressed sensing MRI image based on discrete shearlet transform[J]. Application Research of Computers,2013,30(6):1895-1898.) [12] QU X, GUO D, NING B, et al. Undersampled MRI reconstruction with patch-based directional wavelets[J]. Magnetic Resonance Imaging,2012,30(7):964-977. [13] YANG Y,SUN J,LI H,et al. Deep ADMM-Net for compressive sensing MRI[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook, NY:Curran Associates Inc.,2016:10-18. [14] RAVISHANKAR S,BRESLER Y. MR image reconstruction from highly undersampled k-space data by dictionary learning[J]. IEEE Transactions on Medical Imaging,2011,30(5):1028-1041. [15] EKSIOGLU E M. Decoupled algorithm for MRI reconstruction using nonlocal block matching model:BM3D-MRI[J]. Journal of Mathematical Imaging and Vision,2016,56(3):430-440. [16] QIN C,SCHLEMPER J,CABALLERO J,et al. Convolutional recurrent neural networks for dynamic MR image reconstruction[J]. IEEE Transactions on Medical Imaging,2019,38(1):280-290. [17] YANG G,YU S,DONG H,et al. DAGAN:deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction[J]. IEEE Transactions on Medical Imaging,2018, 37(6):1310-1321. [18] SCHLEMPER J,CABALLERO J,HAJNAL J V,et al. A deep cascade of convolutional neural networks for MR image reconstruction[C]//Proceedings of the 2017 International Conference on Information Processing in Medical Imaging,LNCS 10265. Cham:Springer,2017:647-658. [19] WANG S, CHENG H, YING L, et al. DeepcomplexMRI:exploiting deep residual network for fast parallel MR imaging with complex convolution[J]. Magnetic Resonance Imaging,2020, 68:136-147. [20] SOUZA R,LEBEL R M,FRAYNE R. A hybrid,dual domain, cascade of convolutional neural networks for magnetic resonance image reconstruction[EB/OL].[2020-01-12]. https://openreview.net/pdf?id=HJeJx4XxlN. [21] ZHANG K,SUN M,HAN T X,et al. Residual networks of residual networks:multilevel residual networks[J]. IEEE Transactions on Circuits and Systems for Video Technology,2018, 28(6):1303-1314. [22] SONG Y,ZHU Z,LU Y,et al. Reconstruction of magnetic resonance imaging by three-dimensional dual-dictionary learning[J]. Magnetic Resonance in Medicine,2014,71(3):1285-1298. [23] HAMMERNIK K,KLATZER T,KOBLER E,et al. Learning a variational network for reconstruction of accelerated MRI data[J]. Magnetic Resonance in Medicine,2018,79(6):3055-3071. [24] SOUZA R,LUCENA O,GARRAFA J,et al. An open,multivendor, multi-field-strength brain MR dataset and analysis of publicly available skull stripping methods agreement[J]. NeuroImage,2018,170:482-494. |