[1] 周海燕, 刘鹏程. MR在手腕部小关节病变的临床价值及研究进展[J]. 中国医学工程,2010,18(3):172-175.(ZHOU H Y,LIU P C. Clinical value and research progress of MR in wrist facet joint lesions[J]. China Medical Engineering,2010,18(3):172-175.) [2] 马强. 类风湿关节炎的腕关节MRI及临床应用研究[D]. 太原:山西医科大学,2003:21-23.(MA Q. Clinical study on MRI of the wrist in rheumatoid arthritis[D]. Taiyuan:Shanxi Medical University,2003:21-23.) [3] SCUTELLARI P N, ORZINCOLO C. Rheumatoid arthritis:sequences[J]. European Journal of Radiology,1998,27(S1):S31-S38. [4] ALAMANOS Y,VOULGARI P V,DROSOS A A. Incidence and prevalence of rheumatoid arthritis,based on the 1987 American College of Rheumatology criteria:a systematic review[J]. Seminars in Arthritis and Rheumatism,2006,36(3):182-188. [5] SUMA A B,SNEKHALATHA U,RAJALAKSHMI T. Automated thermal image segmentation of knee rheumatoid arthritis[C]//Proceedings of the 2016 International Conference on Communication and Signal Processing. Piscataway:IEEE,2016:535-539. [6] 马进, 陈岷, 李获, 等. 中药联合抗风湿药治疗类风湿性关节炎活动期的临床观察[J]. 中国实验方剂学杂志,2014,20(5):192-196.(MA J,CHEN M,LI H,et al. Clinical observation of traditional Chinese medicinecombined with antirheumatic drug treatment of rheumatoid arthritis in active stage[J]. Chinese Journal of Experimental Traditional Medical Formulae,2014,20(5):192-196.) [7] 周海燕. 类风湿性关节炎手腕部骨侵蚀MRI定量分析的临床价值[D]. 汕头:汕头大学,2011:2-3.(ZHOU H Y. Clinic values of MRI quantitative analyze in bone erosions in rheumatoid arthritis patients[D]. Shantou:Shantou University,2011:2-3.) [8] AJEGANOVA S,HUIZINGA T. Sustained remission in rheumatoid arthritis:latest evidence and clinical considerations[J]. Therapeutic Advances in Musculoskeletal Disease,2017,9(10):249-262. [9] 黄远彬, 吴小玲, 雷鸣, 等. Sharp-van der Heijde评分对类风湿关节炎的临床应用价值[J]. 临床医药实践,2017, 26(7):524-526. (HUANG Y B,WU X L,LEI M,et al. The clinical application value of sharp-van der Heijde score for rheumatoid arthritis[J]. Proceeding of Clinical Medicine,2017,26(7):524-526.) [10] MCQUEEN F,LASSERE M,EDMONDS J,et al. OMERACT rheumatoid arthritis magnetic resonance imaging studies. Summary of OMERACT 6 MR imaging module[J]. The Journal of Rheumatology,2003,30(6):1387-1392. [11] VAN STEENBERGEN H W,MANGNUS L,REIJNIERSE M,et al. Clinical factors,anticitrullinated peptide antibodies and MRI detected subclinical inflammation in relation to progression from clinically suspect arthralgia to arthritis[J]. Annals of the Rheumatic Diseases,2015,75(10):1824-1830. [12] KLEYER A,KRIETER M,OLIVEIRA I,et al. High prevalence of tenosynovial inflammation before onset of rheumatoid arthritis and its link to progression to RA-acombined MRI/CT study[J]. Seminars in Arthritis and Rheumatism,2016,46(2):143-150. [13] NIEUWENHUIS W P,VAN STEENBERGEN H W,MANGNUS L,et al. Evaluation of the diagnostic accuracy of hand and foot MRI for early rheumatoid arthritis[J]. Rheumatology,2017,56(8):1367-1377. [14] AIZENBERG E, SHAMONIN D P, REIJNIERSE M, et al. Automatic quantification of tenosynovitis on MRI of the wrist in patients with early arthritis:a feasibility study[J]. European Radiology,2019,29(8):4477-4484. [15] 谭利华. 类风湿关节炎:诊断标准与MRI的临床意义[C]//中华医学会放射学分会第13届全国磁共振学术大会暨海外华人磁共振2013年会/国际医学磁共振学会论坛. 杭州:出版者不详,2013:380-381.(TAN L H. Rheumatoid arthritis:diagnostic criteria and clinical significance of MRI[C]//Proceedings of the 13th National Magnetic Resonance Conference of Radiology Society of Chinese Medical Association and Overseas Chinese Annual Meeting of Magnetic Resonance 2013 and International Medical Magnetic Resonance Association Forum. Hangzhou:[s. n.],2013:380-381.) [16] RONNEBERGER O, FISCHER P, BROX T. U-Net:convolutional networks for biomedical image segmentation[C]//Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham:Springer,2015:234-241. [17] HE K,ZHANG X,REN S,et al. Deep residual learning for image recognition[C]//Proceeding of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:770-778. [18] IOFFE S,SZEGEDY C. Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//Proceeding of the 32nd International Conference on Machine Learning. New York:JMLR.org,2015:448-456. [19] MILLETARI F, NAVAB N, AHMADI S A. V-Net:fully convolutional neural networks for volumetric medical image segmentation[C]//Proceeding of the 4th International Conference on 3D Vision. Piscataway:IEEE,2016:565-571. [20] RAHMAN M A,WANG Y. Optimizing intersection-over-union in deep neural networks for image segmentation[C]//Proceedings of the 2016 International Symposium on Visual Computing,LNCS 10072. Cham:Springer,2016:234-244. |