Journal of Computer Applications ›› 2020, Vol. 40 ›› Issue (11): 3306-3313.DOI: 10.11772/j.issn.1001-9081.2020030420
• Virtual reality and multimedia computing • Previous Articles Next Articles
Received:
2020-04-07
Revised:
2020-05-15
Online:
2020-06-03
Published:
2020-11-10
Supported by:
周健, 黄章进
通讯作者:
黄章进(1980-),男,湖北天门人,副教授,博士,主要研究方向:计算机视觉、机器学习、计算机图形学;zhuang@ustc.edu.cn
作者简介:
周健(1995-),男,河南卫辉人,硕士研究生,主要研究方向:计算机视觉、计算机图形学、三维人脸重建
基金资助:
CLC Number:
ZHOU Jian, HUANG Zhangjin. 3D face reconstruction and dense face alignment method based on improved 3D morphable model[J]. Journal of Computer Applications, 2020, 40(11): 3306-3313.
周健, 黄章进. 基于改进三维形变模型的三维人脸重建和密集人脸对齐方法[J]. 计算机应用, 2020, 40(11): 3306-3313.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2020030420
[1] KEMELMACHER-SHLIZERMAN I, BASRI R. 3D face reconstruction from a single image using a single reference face shape[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,33(2):394-405. [2] FYFFE G,JONES A,ALEXANDER O,et al. Driving highresolution facial scans with video performance capture[J]. ACM Transactions on Graphics,2014,34(1):No. 8. [3] 邓秋平, 赵宇明. 基于单幅正面照片的三维人脸重建方法[J]. 计算机工程,2010,36(20):176-178.(DENG Q P,ZHAO Y M. 3D face reconstruction method based on single frontal photo[J]. Computer Engineering,2010,36(20):176-178.) [4] ZHU X,LEI Z,LIU X,et al. Face alignment across large poses:a 3D solution[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:146-155. [5] TEWARI A,ZOLLHÖFER M,KIM H,et al. MoFA:model-based deep convolutional face autoencoder for unsupervised monocular reconstruction[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2017:3735-3744. [6] BLANZ V,VETTER T. A morphable model for the synthesis of 3D faces[C]//Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques. New York:ACM,1999:187-194. [7] RICHARDSON E,SELA M,KIMMEL R. 3D face reconstruction by learning from synthetic data[C]//Proceedings of the 4th International Conference on 3D Vision. Piscataway:IEEE,2016:460-469. [8] LIU F,ZHU R,ZENG D,et al. Disentangling features in 3D face shapes for joint face reconstruction and recognition[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:5216-5225. [9] TRAN A T,HASSNER T,MASI I,et al. Regressing robust and discriminative 3D morphable models with a very deep neural network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:5163-5172. [10] TEWARI A, ZOLLHÖFER M, GARRIDO P, et al. Selfsupervised multi-level face model learning for monocular reconstruction at over 250 Hz[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:2549-2559. [11] GENOVA K,COLE F,MASCHINOT A,et al. Unsupervised training for 3D morphable model regression[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:8377-8386. [12] COOTES T F,EDWARDS G J,TAYLOR C J. Active appearance models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(6):681-685. [13] GERIG T,MOREL-FORSTER A,BLUMER C,et al. Morphable face models-an open framework[C]//Proceedings of the 13th IEEE International Conference on Automatic Face and Gesture Recognition. Piscataway:IEEE,2018:75-82. [14] BOOTH J,ROUSSOS A,ZAFEIRIOU S,et al. A 3D morphable model learnt from 10000 faces[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:5543-5552. [15] TRAN L,LIU X. On learning 3D face morphable model from inthe-wild images[EB/OL].[2020-04-02]. https://arxiv.org/pdf/1808.09560v1.pdf. [16] ROTH J,TONG Y,LIU X. Adaptive 3D face reconstruction from unconstrained photo collections[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:4197-4206. [17] JIN X, TAN X. Face alignment in-the-wild:a survey[J]. Computer Vision and Image Understanding,2017,162:1-22. [18] WANG N,GAO X,TAO D,et al. Facial feature point detection:acomprehensive survey[J]. Neurocomputing,2018,275:50-65. [19] ZHU X,YAN J,YI D,et al. Discriminative 3D morphable model fitting[C]//Proceedings of the 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition. Piscataway:IEEE,2015:1-8. [20] JENI L A,COHN J F,KANADE T. Dense 3D face alignment from 2D videos in real-time[C]//Proceedings of the 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition. Piscataway:IEEE,2015:1-8. [21] JACKSON A S,BULAT A,ARGYRIOU V,et al. Large pose 3D face reconstruction from a single image via direct volumetric CNN regression[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE,2017:1031-1039. [22] JIANG L,ZHANG J,DENG B,et al. 3D face reconstruction with geometry details from a single image[J]. IEEE Transactions on Image Processing,2018,27(10):4756-4770. [23] GUO Y,ZHANG J CAI J,et al. CNN-based real-time dense face reconstruction with inverse-rendered photo-realistic face images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2019,41(6):1294-1307. [24] DENG Y,YANG J,XU S,et al. Accurate 3D face reconstruction with weakly-supervised learning:from single image to image set[EB/OL].[2020-04-02]. https://arxiv.org/pdf/1903.08527.pdf. [25] RICHARDSON E,SELA M,OR-EL R,et al. Learning detailed face reconstruction from a single image[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:1259-1268. [26] FENG Y,WU F,SHAO X,et al. Joint 3D face reconstruction and dense alignment with position map regression network[C]//Proceedings of the 2018 European Conference on Computer Vision,LNCS 11218. Cham:Springer,2018:557-574. [27] SHI T,YUAN Y,FAN C,et al. Face-to-parameter translation for game character auto-creation[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway:IEEE,2019:161-170. [28] CHANG F,TRAN A T,HASSNER T,et al. Deep,landmarkfree FAME:face alignment,modeling,and expression estimation[J]. International Journal of Computer Vision,2019,127(6/7):930-956. [29] ASTHANA A, ZAFEIRIOU S, CHENG S, et al. Robust discriminative response map fitting with constrained local models[C]//Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2013:3444-3451. [30] LIANG Z, DING S, LIN L. Unconstrained facial landmark localization with backbone-branches fully-convolutional networks[EB/OL].[2020-04-02]. https://arxiv.org/abs/1507.03409. [31] PENG X,FERIS R S,WANG X,et al. A recurrent encoderdecoder network for sequential face alignment[C]//Proceedings of the 2016 European Conference on Computer Vision,LNCS 9905. Cham:Springer,2016:38-56. [32] MCDONAGH J,TZIMIROPOULOS G. Joint face detection and alignment with a deformable Hough transform model[C]//Proceedings of the 2016 European Conference on Computer Vision,LNCS 9914. Cham:Springer,2016:569-580. [33] GOU C,WU Y,WANG F,et al. Shape augmented regression for 3D face alignment[C]//Proceedings of the 2016 European Conference on Computer Vision,LNCS 9914. Cham:Springer, 2016:604-615. [34] SÁNTA Z,KATO Z. 3D face alignment without correspondences[C]//Proceedings of the 2016 European Conference on Computer Vision,LNCS 9914. Cham:Springer,2016:521-535. [35] DE BITTENCOURT ZAVAN F H,NASCIMENTO A C P,E SILVA L P,et al. 3D face alignment in the wild:a landmarkfree,nose-based approach[C]//Proceedings of the 2016 European Conference on Computer Vision,LNCS 9914. Cham:Springer, 2016:581-589. [36] YU R, SAITO S, LI H, et al. Learning dense facial correspondences in unconstrained images[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE,2017:4733-4742. [37] BULAT A,TZIMIROPOULOS G. Two-stage convolutional part heatmap regression for the 1st 3D face alignment in the wild (3DFAW) challenge[C]//Proceedings of the 2016 European Conference on Computer Vision,LNCS 9914. Cham:Springer, 2016:616-624. [38] BULAT A,TZIMIROPOULOS G. How far are we from solving the 2D & 3D face alignment problem?(and a dataset of 2300003D facial landmarks)[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2017:1021-1030. [39] JOURABLOO A,LIU X. Pose-invariant 3D face alignment[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway:IEEE,2015:3694-3702. [40] CAO C, HOU Q, ZHOU K. Displaced dynamic expression regression for real-time facial tracking and animation[J]. ACM Transactions on Graphics,2014,33(4):No. 43. [41] LIU Y,JOURABLOO A,REN W,et al. Dense face alignment[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision Workshops. Piscataway:IEEE, 2017:1619-1628. [42] GÜLER R A, TRIGEORGIS G, ANTONAKOS E, et al. DenseReG:fully convolutional dense shape regression in-the-wild[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:6799-6808. [43] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2020-04-02]. https://arxiv.org/pdf/1409.1556v1.pdf. [44] CAO C,WENG Y,ZHOU S,et al. FaceWarehouse:a 3D facial expression database for visualcomputing[J]. IEEE Transactions on Visualization and Computer Graphics,2014,20(3):413-425. [45] RAMAMOORTHI R, HANRAHAN P. A signal-processing framework for inverse rendering[C]//Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques. New York:ACM,2001:117-128. [46] LIU Z,LUO P,WANG X,et al. Deep learning face attributes in the wild[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway:IEEE,2015:3730-3738. [47] KINGMA D P, BA J L. Adam:a method for stochastic optimization[EB/OL].[2020-04-02]. https://arxiv.org/pdf/1412.6980.pdf. [48] JOURABLOO A,LIU X. Large-pose face alignment via CNNbased dense 3D model fitting[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:4188-4196. [49] BHAGAVATULA C,ZHU C,LUU K,et al. Faster than real-time facial alignment:a 3D spatial transformer network approach in unconstrained poses[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2017:4000-4009. |
[1] | Yun LI, Fuyou WANG, Peiguang JING, Su WANG, Ao XIAO. Uncertainty-based frame associated short video event detection method [J]. Journal of Computer Applications, 2024, 44(9): 2903-2910. |
[2] | Hong CHEN, Bing QI, Haibo JIN, Cong WU, Li’ang ZHANG. Class-imbalanced traffic abnormal detection based on 1D-CNN and BiGRU [J]. Journal of Computer Applications, 2024, 44(8): 2493-2499. |
[3] | Dongwei WANG, Baichen LIU, Zhi HAN, Yanmei WANG, Yandong TANG. Deep network compression method based on low-rank decomposition and vector quantization [J]. Journal of Computer Applications, 2024, 44(7): 1987-1994. |
[4] | Yangyi GAO, Tao LEI, Xiaogang DU, Suiyong LI, Yingbo WANG, Chongdan MIN. Crowd counting and locating method based on pixel distance map and four-dimensional dynamic convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2233-2242. |
[5] | Mengyuan HUANG, Kan CHANG, Mingyang LING, Xinjie WEI, Tuanfa QIN. Progressive enhancement algorithm for low-light images based on layer guidance [J]. Journal of Computer Applications, 2024, 44(6): 1911-1919. |
[6] | Jianjing LI, Guanfeng LI, Feizhou QIN, Weijun LI. Multi-relation approximate reasoning model based on uncertain knowledge graph embedding [J]. Journal of Computer Applications, 2024, 44(6): 1751-1759. |
[7] | Wenshuo GAO, Xiaoyun CHEN. Point cloud classification network based on node structure [J]. Journal of Computer Applications, 2024, 44(5): 1471-1478. |
[8] | Min SUN, Qian CHENG, Xining DING. CBAM-CGRU-SVM based malware detection method for Android [J]. Journal of Computer Applications, 2024, 44(5): 1539-1545. |
[9] | Tianhua CHEN, Jiaxuan ZHU, Jie YIN. Bird recognition algorithm based on attention mechanism [J]. Journal of Computer Applications, 2024, 44(4): 1114-1120. |
[10] | Lijun XU, Hui LI, Zuyang LIU, Kansong CHEN, Weixuan MA. 3D-GA-Unet: MRI image segmentation algorithm for glioma based on 3D-Ghost CNN [J]. Journal of Computer Applications, 2024, 44(4): 1294-1302. |
[11] | Jie WANG, Hua MENG. Image classification algorithm based on overall topological structure of point cloud [J]. Journal of Computer Applications, 2024, 44(4): 1107-1113. |
[12] | Yongfeng DONG, Jiaming BAI, Liqin WANG, Xu WANG. Chinese named entity recognition combining prior knowledge and glyph features [J]. Journal of Computer Applications, 2024, 44(3): 702-708. |
[13] | Jingxian ZHOU, Xina LI. UAV detection and recognition based on improved convolutional neural network and radio frequency fingerprint [J]. Journal of Computer Applications, 2024, 44(3): 876-882. |
[14] | Ruifeng HOU, Pengcheng ZHANG, Liyuan ZHANG, Zhiguo GUI, Yi LIU, Haowen ZHANG, Shubin WANG. Iterative denoising network based on total variation regular term expansion [J]. Journal of Computer Applications, 2024, 44(3): 916-921. |
[15] | Jiawei ZHANG, Guandong GAO, Ke XIAO, Shengzun SONG. Violent crime hierarchy algorithm by joint modeling of improved hierarchical attention network and TextCNN [J]. Journal of Computer Applications, 2024, 44(2): 403-410. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||