[1] KENNEDY J,EBERHART R C. Particle swarm optimization[C]//Proceedings of the 1995 International Conference on Neural Networks. Piscataway:IEEE,1995:1942-1948. [2] 周文峰, 梁晓磊, 唐可心, 等. 具有拓扑时变和搜索扰动的混合粒子群优化算法[J]. 计算机应用,2020,40(7):1913-1918. (ZHOU W F,LIANG X L,TANG K X,et al. Hybrid particle swarm optimization algorithm with topological time-varying and search disturbance[J]. Journal of Computer Applications,2020,40(7):1913-1918.) [3] VAN DEN BERGH F,ENGELBRECHT A P. A convergence proof for the particle swarm optimiser[J]. Fundamenta Informaticae, 2010,105(4):341-374. [4] SUN J, PALADE V, CAI Y, et al. Biochemical systems identification by a random drift particle swarm optimization approach[J]. BMC Bioinformatics,2014,15(S6):No. S1. [5] OMAR M A. Elementary Solid State Physics:Principles and Applications[M]. Boston:Addison-Wesley,1994:138-169. [6] SUN J,WU X,PALADE V,et al. Random drift particle swarm optimization algorithm:convergence analysis and parameter selection[J]. Machine Learning,2015,101(1/2/3):345-376. [7] WU J,ZHANG H,LI J,et al. Scenario based stochastic optimal operated for hybrid energy system with random drift swarm optimization[C]//Proceedings of the 2019 IEEE Congress on Evolutionary Computation. Piscataway:IEEE,2019:1176-1181. [8] ELSAYED W T,HEGAZY Y G,EL-BAGES M S,et al. Improved random drift particle swarm optimization with self-adaptive mechanism for solving the power economic dispatch problem[J]. IEEE Transactions on Industrial Informatics,2017,13(3):1017-1026. [9] YANG Z, WU A. A non-revisiting quantum-behaved particle swarm optimization based multilevel thresholding for image segmentation[J]. Neural Computing and Applications,2020,32(16):12011-12031. [10] ZHANG X,ZHANG X. A non-revisiting artificial bee colony algorithm for phased array synthesis[J]. EURASIP Journal on Wireless Communications and Networking,2017,2017:No. 7. [11] CHOW C K, YUEN S Y. Continuous non-revisiting genetic algorithm with random search space re-partitioning and one-geneflip mutation[C]//Proceedings of the 2010 IEEE Congress on Evolutionary Computation,Piscataway:IEEE,2010:1-8. [12] CHOW C K, YUEN S Y. Continuous non-revisiting genetic algorithm with overlapped search sub-region[C]//Proceedings of the 2012 IEEE Congress on Evolutionary Computation. Piscataway:IEEE,2012:1-8. [13] YUEN S Y,CHOW C K. A genetic algorithm that adaptively mutates and never revisits[J]. IEEE Transactions on Evolutionary Computation,2009,13(2):454-472. [14] 赵吉, 程成. 基于演化搜索信息的量子行为粒子群优化算法[J]. 计算机工程与应用,2017,53(9):41-46,126.(ZHAO J, CHENG C. Improved QPSO algorithm based on search history[J]. Computer Engineering and Applications, 2017, 53(9):41-46,126.) [15] CLERC M,KENNEDY J. The particle swarm-explosion, stability,and convergence in a multidimensionalcomplex space[J]. IEEE Transactions on Evolutionary Computation,2002,6(1):58-73. [16] SUN J,ZHAO J,WU X,et al. Parameter estimation for chaotic systems with a drift particle swarm optimization method[J]. Physics Letters A,2010,374(28):2816-2822. [17] LI Y, XIANG R, JIAO L, et al. An improved cooperative quantum-behaved particle swarm optimization[J]. Soft Computing,2012,16(6):1061-1069. [18] LI Y,JIAO L,SHANG R,et al. Dynamic-context cooperative quantum-behaved particle swarm optimization based on multilevel thresholding applied to medical image segmentation[J]. Information Sciences,2015,294:408-422. [19] KOUMOUSIS V K, KATSARAS C P. A saw-tooth genetic algorithmcombining the effects of variable population size and reinitialization to enhance performance[J]. IEEE Transactions on Evolutionary Computation,2006,10(1):19-28. [20] YAO X,LIU Y,LIN G. Evolutionary programming made faster[J]. IEEE Transactions on Evolutionary Computation,1999,3(2):82-102. [21] STORN R,PRICE K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization,1997,11(4):341-359. [22] HANSEN N. The CMA evolution strategy:a tutorial[EB/OL].[2020-03-06]. https://arxiv.org/pdf/1604.00772.pdf. [23] 陈伟, 周頔, 孙俊, 等. 一种采用完全学习策略的量子行为粒子群优化算法[J]. 控制与决策,2012,27(5):719-723,730. (CHEN W,ZHOU D,SUN J,et al. Improved quantum-behaved particle swarm optimization algorithm based oncomprehensive learning strategy[J]. Control and Decision,2012,27(5):719-723,730.) |