[1] KENNEDY J, EBERHART R. Particle swarm optimization [C]//Proceedings of the International Conference on Neural Networks. Piscataway: IEEE, 1995:1942-1948. [2] DORIGO M, BIRATTARI M, STUTZLE T. Ant colony optimization [J]. IEEE Computational Intelligence Magazine, 2006,1(4):28-39. [3] KARABOGA D, GORKEMLI B, OZTURK C, et al. A comprehensive survey: Artificial Bee Colony (ABC) algorithm and applications [J]. Artificial Intelligence Review, 2014,42(1):21-57. [4] KENNEDY J, EBERHART R C. A discrete binary version of the particle swarm algorithm [C]//Proceedings of the IEEE International Conference on Computational Cybernetics and Simulation. Piscataway: IEEE, 1997:4104-4108. [5] NEZAMABADI-POUR H, ROSTAMI-SHARBABAKI M, MAGHFOORI-FARSANGI M. Binary particle swarm optimization: challenges and new solutions [J]. Journal of Computer Society of Iran (CSI) on Computer Science and Engineering (JCSE), 2008,6(1-A):21-32. [6] del VALLE Y, VENAYAGAMOORTHY G K, MOHAGHEGHI S, et al. Particle swarm optimization: basic concepts, variants and applications in power systems [J]. IEEE Transactions on Evolutionary Computation, 2008,12(2):171-195. [7] XI M, SHENG X, SUN J. Quantum-behaved particle swarm optimization algorithm with crossover operator to multi-dimension problems [J]. Journal of Computer Applications, 2015,35(3):680-684.(奚茂龙,盛歆漪,孙俊.基于多维问题的交叉算子量子粒子群优化算法[J].计算机应用,2015,35(3):680-684.) [8] CHEN S. Improved particle swarm optimization algorithm based on centroid and self-adaptive exponential inertia weight [J]. Journal of Computer Applications, 2015,35(3):675-679.(陈寿文.基于质心和自适应指数惯性权重改进的粒子群算法[J].计算机应用,2015,35(3):675-679.) [9] XU J, LU H, SHI G. Application of restricted velocity particle swarm optimization and self-adaptive velocity particle swarm optimization to unconstrained optimization problem [J]. Journal of Computer Applications, 2015,35(3):668-674.(许君,鲁海燕,石桂娟.限制速度粒子群优化和自适应速度粒子群优化在无约束优化问题中的应用[J].计算机应用,2015,35(3):668-674.) [10] LALWANI S, SINGHAL S, KUMAR R, et al. A comprehensive survey: Applications of Multi-Objective Particle Swarm Optimization (MOPSO) algorithm[J]. Transactions on Combinatorics, 2013,2(1):39-101. [11] TU K, LIANG Z. Parallel computation models of particle swarm optimization implemented by multiple threads [J]. Expert Systems with Applications, 2011,38(5):5858-5866. [12] MUSSI L, DAOLIO F, CAGNONI S. Evaluation of parallel particle swarm optimization algorithms within the CUDA architecture [J]. Information Sciences, 2011,181(20):4642-4657. [13] WAINTRAUB M, SCHIRRU R, PEREIRA C M N A. Multiprocessor modeling of parallel particle swarm optimization applied to nuclear engineering problems [J]. Progress in Nuclear Energy, 2009,51(6/7):680-688. [14] ALBA E, TOMASSINI M. Parallelism and evolutionary algorithms [J]. IEEE Transactions on Evolutionary Computation, 2002,6(5):443-462. [15] CLERC M. Standard particle swarm optimisation from 2006 to 2011 [EB/OL]. [2015-01-08]. https://hal.archives-ouvertes.fr/hal-00764996. [16] AB AZIZ N A, MUBIN M, MOHAMAD M S, et al. A synchronous-asynchronous particle swarm optimisation algorithm [J]. The Scientific World Journal, 2014,2014:1-17. [17] LIANG J J, QU B Y, SUGANTHAN P N. Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization [EB/OL]. [2015-01-06]. http://web.mysites.ntu.edu.sg/epnsugan/PublicSite/Shared%20Documents/CEC-2014/Definitions%20of%20%20CEC2014%20benchmark%20suite%20Part%20A.pdf. [18] ZAMBRANO-BIGIARINI M, CLERC M, ROJAS R. Standard particle swarm optimisation 2011 at CEC-2013: a baseline for future PSO improvements [C]//Proceedings of the IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2013:2337-2344. |