[1] 孟祥武, 刘树栋, 张玉洁, 等. 社会化推荐系统研究[J]. 软件学报,2015,26(6):1356-1372.(MENG X W,LIU S D,ZHANG Y J,et al. Research on social recommender systems[J]. Journal of Software,2015,26(6):1356-1372.) [2] YANG X,GUO Y,LIU Y,et al. A survey of collaborative filtering based social recommender systems[J]. Computer Communications, 2014,41:1-10. [3] DEBNATH S,GANGULY N,MITRA P. Feature weighting in content based recommendation system using social network analysis[C]//Proceedings of the 17th International Conference on World Wide Web. New York:ACM,2008:1041-1042. [4] ECK D,LAMERE P,BERTIN-MAHIEUX T,et al. Automatic generation of social tags for music recommendation[C]//Proceedings of the 20th International Conference on Neural Information Processing Systems. Red Hook, NY:Curran Associates Inc.,2007:385-392. [5] YANG X,STECK H,LIU Y. Circle-based recommendation in online social networks[C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2012:1267-1275. [6] CHUN H,KWAK H,EOM Y H,et al. Comparison of online social relations in volume vs interaction:a case study of cyworld[C]//Proceedings of the 8th ACM SIGCOMM Conference on Internet Measurement. New York:ACM,2008:57-70. [7] OU M,CUI P,WANG F,et al. Comparing apples to oranges:a scalable solution with heterogeneous hashing[C]//Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2013:230-238. [8] SHEN J,PANG H,WANG M,et al. Modeling concept dynamics for large scale music search[C]//Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:ACM,2012:455-464. [9] SHEN J,CHENG Z. Personalized video similarity measure[J]. Multimedia Systems,2011,17(5):421-433. [10] FENG H, QIAN X. Mining user-contributed photos for personalized product recommendation[J]. Neurocomputing, 2014,129:409-420. [11] BELÉM F M,ALMEIDA J M,GONÇALVES M A. A survey on tag recommendation methods[J]. Journal of the Association for Information Science and Technology,2017,68(4):830-844. [12] XIA B,LI T,LI Q,et al. Noise-tolerance matrix completion for location recommendation[J]. Data Mining and Knowledge Discovery,2018,32(1):1-24. [13] LIU J, TANG M, ZHENG Z, et al. Location-aware and personalized collaborative filtering for Web service recommendation[J]. IEEE Transactions on Services Computing,2016,9(5):686-699. [14] YANG X,STECK H,LIU Y. Circle-based recommendation in online social networks[C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2012:1267-1275. [15] JIANG M, CUI P, LIU R, et al. Social contextual recommendation[C]//Proceedings of the 21st ACM International Conference on Information and Knowledge Management. New York:ACM,2012:45-54. [16] SALAKHUTDINOV R, MNIH A. Probabilistic matrix factorization[C]//Proceedings of the 20th International Conference on Neural Information Processing Systems. Red Hook, NY:Curran Associates Inc.,2007:1257-2364. [17] HUANG Z,LIU Q,ZHAI C,et al. Exploring multi-objective exercise recommendations in online education systems[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York:ACM, 2019:1261-1270. [18] ZHENG N,SONG S,BAO H. A temporal-topic model for friend recommendations in Chinese microblogging systems[J]. IEEE Transactions on Systems,Man,and Cybernetics:Systems,2015, 45(9):1245-1253. [19] LU Y,ZHAO L,WANG B. From virtual community members to C2C e-commerce buyers:trust in virtual communities and its effect on consumers' purchase intention[J]. Electronic Commerce Research and Applications,2010,9(4):346-360. [20] YUAN Q,CHEN L,ZHAO S. Factorization vs. regularization:fusing heterogeneous social relationships in top-n recommendation[C]//Proceedings of the 5th ACM conference on Recommender Systems. New York:ACM,2011:245-252. [21] KIM H R,CHAN P K. Learning implicit user interest hierarchy for context in personalization[C]//Proceedings of the 8th International Conference on Intelligent User Interfaces. New York:ACM,2003:101-108. [22] 李琳, 刘锦行, 孟祥福, 等. 融合评分矩阵与评论文本的商品推荐模型[J]. 计算机学报,2018,41(7):1559-1573.(LI L,LIU J H,MENG X F,et al. Recommendation models by exploiting rating matrix and review text[J]. Chinese Journal of Computers, 2018,41(7):1559-1573.) [23] 张宜浩, 朱小飞, 徐传运, 等. 基于用户评论的深度情感分析和多视图协同融合的混合推荐方法[J]. 计算机学报,2019,42(6):1316-1333.(ZHANG Y H,ZHU X F,XU C Y,et al. Hybrid recommendation approach based on deep sentiment analysis of user reviews and multi-view collaborative fusion[J]. Chinese Journal of Computers,2019,42(6):1316-1333.) [24] ZHAO G,QIAN X,XIE X. User-service rating prediction by exploring social users' rating behaviors[J]. IEEE Transactions on Multimedia,2016,18(3):496-506. [25] HUANG S, ZHANG J, WANG L, et al. Social friend recommendation based on multiple network correlation[J]. IEEE Transactions on Multimedia,2016,18(2):287-299. [26] YU W,LI S. Recommender systems based on multiple social networks correlation[J]. Future Generation Computer Systems, 2018,87:312-327. [27] PENG H,WANG H,DU B,et al. Spatial temporal incidence dynamic graph neural networks for traffic flow forecasting[J]. Information Sciences,2020,521:277-290. [28] LI M,MA Z,WANG Y G,et al. Fast Haar transforms for graph neural networks[J]. Neural Networks,2020,128:188-198. [29] ZOU F, SHEN L, JIE Z, et al. A sufficient condition for convergences of Adam and RMSProp[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2019:11119-11127. [30] GUO G,ZHANG J,YORKE-SMITH N. TrustSVD:collaborative filtering with both the explicit and implicit influence of user trust and of item ratings[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2015:123-129. [31] TANG J,AGGARWAL C,LIU H. Recommendations in signed social networks[C]//Proceedings of the 25th International Conference on World Wide Web. Republic and Canton of Geneva, CHE:International World Wide Web Conferences Steering Committee,2016:31-40. |