Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (11): 3327-3334.DOI: 10.11772/j.issn.1001-9081.2023101526
• Artificial intelligence • Previous Articles Next Articles
Nengbing HU, Biao CAI(), Xu LI, Danhua CAO
Received:
2023-11-18
Revised:
2024-02-01
Accepted:
2024-02-05
Online:
2024-11-13
Published:
2024-11-10
Contact:
Biao CAI
About author:
HU Nengbing, born in 1998, M. S. candidate. His research interests include graph neural networks, graph contrast learning.通讯作者:
蔡彪
作者简介:
胡能兵(1998—),男,四川成都人,硕士研究生,CCF会员,主要研究方向:图神经网络、图对比学习基金资助:
CLC Number:
Nengbing HU, Biao CAI, Xu LI, Danhua CAO. Graph classification method based on graph pooling contrast learning[J]. Journal of Computer Applications, 2024, 44(11): 3327-3334.
胡能兵, 蔡彪, 李旭, 曹旦华. 基于图池化对比学习的图分类方法[J]. 《计算机应用》唯一官方网站, 2024, 44(11): 3327-3334.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023101526
数据集 | 图数 | 类别数 | 平均节点数 | 平均边数 |
---|---|---|---|---|
D&D | 1 178 | 2 | 284.32 | 1 431.30 |
MUTAG | 188 | 2 | 17.93 | 19.79 |
PROTEINS | 1 113 | 2 | 39.06 | 72.82 |
Tab. 1 Biochemical dataset statistics
数据集 | 图数 | 类别数 | 平均节点数 | 平均边数 |
---|---|---|---|---|
D&D | 1 178 | 2 | 284.32 | 1 431.30 |
MUTAG | 188 | 2 | 17.93 | 19.79 |
PROTEINS | 1 113 | 2 | 39.06 | 72.82 |
数据集 | 图数 | 类别数 | 平均节点数 | 平均边数 |
---|---|---|---|---|
IMDB-B | 1 000 | 2 | 19.77 | 96.53 |
IMDB-M | 1 500 | 3 | 13.00 | 65.94 |
Tab. 2 Social network dataset statistics
数据集 | 图数 | 类别数 | 平均节点数 | 平均边数 |
---|---|---|---|---|
IMDB-B | 1 000 | 2 | 19.77 | 96.53 |
IMDB-M | 1 500 | 3 | 13.00 | 65.94 |
超参数 | 取值范围 |
---|---|
学习率 | 0.000 1,0.000 5,0.001 |
隐藏层维度 | 64,128 |
池化率 | 0.4,0.5,0.6 |
Tab. 3 Hyperparameter value ranges recommended in literature [10]
超参数 | 取值范围 |
---|---|
学习率 | 0.000 1,0.000 5,0.001 |
隐藏层维度 | 64,128 |
池化率 | 0.4,0.5,0.6 |
方法 | 生物化学数据集 | 社交网络数据集 | |||
---|---|---|---|---|---|
D&D | MUTAG | PROTEINS | IMDB-B | IMDB-M | |
SAGPooL_g | 71.54±0.91 | 76.78±2.12 | 72.02±1.08 | 72.16±0.88 | 49.47±0.56 |
SAGPooL_h | 74.72±0.82 | 73.67±4.28 | 71.56±1.49 | 72.55±1.28 | 50.23±0.44 |
ASAP | 76.58±1.04 | 77.83±1.49 | 77.83±1.49 | 72.81±0.50 | 50.78±0.75 |
MinCutPool | 78.22±0.54 | 79.17±1.64 | 74.72±0.48 | 72.65±0.75 | 51.04±0.70 |
Sequ2Sequ | 71.94±0.56 | 69.89±1.94 | 73.27±0.85 | 72.90±0.75 | 50.19±0.39 |
StructPool | 78.45±0.40 | 79.50±1.75 | 75.16±0.86 | 72.06±0.64 | 50.23±0.53 |
SortPool | 75.58±0.72 | 71.94±3.55 | 73.17±0.88 | 72.12±1.12 | 48.18±0.83 |
GMT | 78.72±0.59 | 83.44±1.33 | 75.09±0.59 | 73.48±0.76 | 50.66±0.82 |
SEP-G | 77.98±0.57 | 85.56±1.09 | 76.42±0.39 | 74.12±0.56 | 51.53±0.65 |
GPCL | 80.51±0.86 | 89.21±1.47 | 76.98±0.72 | 74.30±0.68 | 49.57±0.61 |
Tab. 4 Comparison of accuracy ± standard deviation between GPCL and other methods
方法 | 生物化学数据集 | 社交网络数据集 | |||
---|---|---|---|---|---|
D&D | MUTAG | PROTEINS | IMDB-B | IMDB-M | |
SAGPooL_g | 71.54±0.91 | 76.78±2.12 | 72.02±1.08 | 72.16±0.88 | 49.47±0.56 |
SAGPooL_h | 74.72±0.82 | 73.67±4.28 | 71.56±1.49 | 72.55±1.28 | 50.23±0.44 |
ASAP | 76.58±1.04 | 77.83±1.49 | 77.83±1.49 | 72.81±0.50 | 50.78±0.75 |
MinCutPool | 78.22±0.54 | 79.17±1.64 | 74.72±0.48 | 72.65±0.75 | 51.04±0.70 |
Sequ2Sequ | 71.94±0.56 | 69.89±1.94 | 73.27±0.85 | 72.90±0.75 | 50.19±0.39 |
StructPool | 78.45±0.40 | 79.50±1.75 | 75.16±0.86 | 72.06±0.64 | 50.23±0.53 |
SortPool | 75.58±0.72 | 71.94±3.55 | 73.17±0.88 | 72.12±1.12 | 48.18±0.83 |
GMT | 78.72±0.59 | 83.44±1.33 | 75.09±0.59 | 73.48±0.76 | 50.66±0.82 |
SEP-G | 77.98±0.57 | 85.56±1.09 | 76.42±0.39 | 74.12±0.56 | 51.53±0.65 |
GPCL | 80.51±0.86 | 89.21±1.47 | 76.98±0.72 | 74.30±0.68 | 49.57±0.61 |
方法 | 生物化学数据集 | 社交网络数据集 | |||
---|---|---|---|---|---|
D&D | MUTAG | PROTEINS | IMDB-B | IMDB-M | |
GCN | 72.05±0.55 | 69.50±1.78 | 73.24±0.73 | 73.26±0.46 | 50.39±0.41 |
GCN+POOL | 71.54±0.91 | 76.78±2.12 | 72.02±1.08 | 72.16±0.88 | 49.47±0.56 |
GPCL | 80.51±0.86 | 89.21±1.47 | 76.98±0.72 | 74.30±0.68 | 49.57±0.61 |
Tab. 5 Accuracy ± standard deviation results of ablation experiments
方法 | 生物化学数据集 | 社交网络数据集 | |||
---|---|---|---|---|---|
D&D | MUTAG | PROTEINS | IMDB-B | IMDB-M | |
GCN | 72.05±0.55 | 69.50±1.78 | 73.24±0.73 | 73.26±0.46 | 50.39±0.41 |
GCN+POOL | 71.54±0.91 | 76.78±2.12 | 72.02±1.08 | 72.16±0.88 | 49.47±0.56 |
GPCL | 80.51±0.86 | 89.21±1.47 | 76.98±0.72 | 74.30±0.68 | 49.57±0.61 |
模型 | D&D | MUTAG | IMDB-B |
---|---|---|---|
GPCL | 80.51 | 89.21 | 74.30 |
GPCLGCN-1layer | 78.98 | 88.89 | 70.20 |
GPCLGCN-2layer | 79.39 | 89.72 | 71.80 |
AblationGCN-1layer | 76.83 | 76.82 | 71.45 |
AblationGCN-2layer | 76.68 | 77.54 | 71.34 |
GPCLGAT | 79.40 | 90.45 | 73.62 |
AblationGAT | 75.49 | 80.26 | 73.50 |
GPCLSage | 79.94 | 88.63 | 74.01 |
AblationSage | 76.28 | 76.79 | 74.25 |
Tab. 6 Accuracies of different message aggregation methods in GPCL
模型 | D&D | MUTAG | IMDB-B |
---|---|---|---|
GPCL | 80.51 | 89.21 | 74.30 |
GPCLGCN-1layer | 78.98 | 88.89 | 70.20 |
GPCLGCN-2layer | 79.39 | 89.72 | 71.80 |
AblationGCN-1layer | 76.83 | 76.82 | 71.45 |
AblationGCN-2layer | 76.68 | 77.54 | 71.34 |
GPCLGAT | 79.40 | 90.45 | 73.62 |
AblationGAT | 75.49 | 80.26 | 73.50 |
GPCLSage | 79.94 | 88.63 | 74.01 |
AblationSage | 76.28 | 76.79 | 74.25 |
1 | LAZER D, PENTLAND A, ADAMIC L, et al. Computational social science[J]. Science, 2009, 323(5915): 721-723. |
2 | DUVENAUD D K, MACLAURIN D, AGUILERA-IPARRAGUIRRE J, et al. Convolutional networks on graphs for learning molecular fingerprints[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems — Volume 2. Cambridge: MIT Press, 2015: 2224-2232. |
3 | BEPLER T, BERGER B. Learning the protein language: evolution, structure, and function[J]. Cell Systems, 2021, 12(6): 654-669. |
4 | SHERVASHIDZE N, SCHWEITZER P, JAN E, et al. Weisfeiler-Lehman graph kernels[J]. The Journal of Machine Learning Research, 2011, 12(2011):2539-2561. |
5 | BORGWARDT K M, KRIEGEL H P. Shortest-path kernels on graphs[C]// Proceedings of the 5th IEEE International Conference on Data Mining. Piscataway: IEEE, 2005: 1-8. |
6 | SHERVASHIDZE N, VISHWANATHAN S V N, PETRI T H, et al. Efficient graphlet kernels for large graph comparison[C]// Proceedings of the 12th International Conference on Artificial Intelligence and Statistics. New York: JMLR, 2009: 488-495. |
7 | MA Y, WANG S, AGGARWAL C C, et al. Graph convolutional networks with EigenPooling[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 723-731. |
8 | MAGNER A, BARANWAL M, HERO A O. Fundamental limits of deep graph convolutional networks for graph classification[J]. IEEE Transactions on Information Theory, 2022, 68(5): 3218-3233. |
9 | BAEK J, KANG M, HWANG S J. Accurate learning of graph representations with graph multiset pooling[EB/OL]. [2023-09-15]. . |
10 | LEE J, LEE I, KANG J. Self-attention graph pooling[C]// Proceedings of the 36th International Conference on Machine Learning. New York: JMLR, 2019: 3734-3743. |
11 | RANJAN E, SANYAL S, TALUKDAR P. ASAP: adaptive structure aware pooling for learning hierarchical graph representations[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2020: 5470-5477. |
12 | YUAN H, JI S. StructPool: structured graph pooling via conditional random fields[EB/OL]. [2023-05-25].. |
13 | NEUHAUS M, BUNKE H. Automatic learning of cost functions for graph edit distance[J]. Information Sciences, 2007, 177(1): 239-247. |
14 | MORRIS C, RITZERT M, FEY M, et al. Weisfeiler and Leman go neural: higher-order graph neural networks[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2019: 4602-4609. |
15 | 王兆慧,沈华伟,曹婍,等.图分类研究综述[J].软件学报,2022,33(1):171-192. |
WANG Z H, SHEN H W, CAO Q, et al. Survey on graph classification[J]. Journal of Software, 2022, 33(1): 171-192. | |
16 | PASA L, NAVARIN N, ERB W, et al. Empowering simple graph convolutional networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(4): 4385-4399. |
17 | CAI B, ZHU X, QIN Y. Parameters optimization of hybrid strategy recommendation based on particle swarm algorithm[J]. Expert Systems with Applications, 2021, 168: No.114388. |
18 | CAI B, YANG X, HUANG Y, et al. A triangular personalized recommendation algorithm for improving diversity[J]. Discrete Dynamics in Nature and Society, 2018, 2018(1): No.3162068. |
19 | WU L, XIA J, GAO Z, et al. GraphMixup: improving class-imbalanced node classification by reinforcement mixup and self-supervised context prediction[C]// Proceedings of the 2022 Joint European Conference on Machine Learning and Knowledge Discovery in Databases, LNCS 13716. Cham: Springer, 2023: 519-535. |
20 | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. [2023-10-13].. |
21 | VINYALS O, BENGIO S, KUDLUR M. Order matters: sequence to sequence for sets[EB/OL]. [2023-09-01].. |
22 | ZHANG M, CUI Z, NEUMANN M, et al. An end-to-end deep learning architecture for graph classification[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2018: 4438-4445. |
23 | YING R, YOU J, MORRIS C, et al. Hierarchical graph representation learning with differentiable pooling[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2018: 4805-4815. |
24 | VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL]. [2023-08-04].. |
25 | YAN Z, CAO W, JI J. Social behavior prediction with graph U‑Net+[J]. Discover Internet of Things, 2021, 1: No.18. |
26 | LeCUN Y. A theoretical framework for back-propagation[C]// Proceedings of the 1988 Connectionist Models Summer School. San Mateo: Morgan Kaufmann Publishers, Inc., 1989: 21-28. |
27 | CANGEA C, VELIČKOVIĆ P, JOVANOVIĆ N, et al. Towards sparse hierarchical graph classifiers[EB/OL]. [2023-07-25].. |
28 | FEY M, LENSSEN J E. Fast graph representation learning with PyTorch Geometric[EB/OL]. [2023-07-06].. |
29 | PASZKE A, GROSS S, CHINTALA S, et al. Automatic differentiation in PyTorch[EB/OL]. [2023-06-19].. |
30 | DOBSON P D, DOIG A J. Distinguishing enzyme structures from non-enzymes without alignments[J]. Journal of Molecular Biology, 2003, 330(4): 771-783. |
31 | BORGWARDT K M, ONG C S, SCHÖNAUER S, et al. Protein function prediction via graph kernels[J]. Bioinformatics, 2005, 21(S1): i47-i56. |
32 | DEBNATH A K, DE COMPADRE R L L, DEBNATH G, et al. Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. Correlation with molecular orbital energies and hydrophobicity[J]. Journal of Medicinal Chemistry, 1991, 34(2): 786-797. |
33 | YANARDAG P, VISHWANATHAN S V N. Deep graph kernels[C]// Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2015:1365-1374. |
34 | SHCHUR O, MUMME M, BOJCHEVSKI A, et al. Pitfalls of graph neural network evaluation[EB/OL]. [2024-01-30].. |
35 | KINGMA D P, BA J L. Adam: a method for stochastic optimization[EB/OL]. [2023-08-17].. |
36 | BIANCHI F M, GRATTAROLA D, ALIPPI C. Spectral clustering with graph neural networks for graph pooling[C]// Proceedings of the 37th International Conference on Machine Learning. New York: JMLR, 2020: 874-883. |
37 | WU J, CHEN X, XU K, et al. Structural entropy guided graph hierarchical pooling[C]// Proceedings of the 39th International Conference on Machine Learning. New York: JMLR, 2022: 24017-24030. |
This work is partially supported byFoundation: National Natural Science Foundation of China (61802034). |
[1] | Hang YANG, Wanggen LI, Gensheng ZHANG, Zhige WANG, Xin KAI. Multi-layer information interactive fusion algorithm based on graph neural network for session-based recommendation [J]. Journal of Computer Applications, 2024, 44(9): 2719-2725. |
[2] | Tingjie TANG, Jiajin HUANG, Jin QIN. Session-based recommendation with graph auxiliary learning [J]. Journal of Computer Applications, 2024, 44(9): 2711-2718. |
[3] | Jieru JIA, Jianchao YANG, Shuorui ZHANG, Tao YAN, Bin CHEN. Unsupervised person re-identification based on self-distilled vision Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2893-2902. |
[4] | Yu DU, Yan ZHU. Constructing pre-trained dynamic graph neural network to predict disappearance of academic cooperation behavior [J]. Journal of Computer Applications, 2024, 44(9): 2726-2731. |
[5] | Xingyao YANG, Yu CHEN, Jiong YU, Zulian ZHANG, Jiaying CHEN, Dongxiao WANG. Recommendation model combining self-features and contrastive learning [J]. Journal of Computer Applications, 2024, 44(9): 2704-2710. |
[6] | Fan YANG, Yao ZOU, Mingzhi ZHU, Zhenwei MA, Dawei CHENG, Changjun JIANG. Credit card fraud detection model based on graph attention Transformation neural network [J]. Journal of Computer Applications, 2024, 44(8): 2634-2642. |
[7] | Xinrui LIN, Xiaofei WANG, Yan ZHU. Academic anomaly citation group detection based on local extended community detection [J]. Journal of Computer Applications, 2024, 44(6): 1855-1861. |
[8] | Jiong WANG, Taotao TANG, Caiyan JIA. PAGCL: positive augmentation graph contrastive learning recommendation method without negative sampling [J]. Journal of Computer Applications, 2024, 44(5): 1485-1492. |
[9] | Jie GUO, Jiayu LIN, Zuhong LIANG, Xiaobo LUO, Haitao SUN. Recommendation method based on knowledge‑awareness and cross-level contrastive learning [J]. Journal of Computer Applications, 2024, 44(4): 1121-1127. |
[10] | Xiawuji, Heming HUANG, Gengzangcuomao, Yutao FAN. Survey of extractive text summarization based on unsupervised learning and supervised learning [J]. Journal of Computer Applications, 2024, 44(4): 1035-1048. |
[11] | Dapeng XU, Xinmin HOU. Feature selection method for graph neural network based on network architecture design [J]. Journal of Computer Applications, 2024, 44(3): 663-670. |
[12] | Rui JIANG, Wei LIU, Cheng CHEN, Tao LU. Asymmetric unsupervised end-to-end image deraining network [J]. Journal of Computer Applications, 2024, 44(3): 922-930. |
[13] | Pei ZHAO, Yan QIAO, Rongyao HU, Xinyu YUAN, Minyue LI, Benchu ZHANG. Multivariate time series anomaly detection based on multi-domain feature extraction [J]. Journal of Computer Applications, 2024, 44(11): 3419-3426. |
[14] | Beijing ZHOU, Hairong WANG, Yimeng WANG, Lisi ZHANG, He MA. Recommendation method using knowledge graph embedding propagation [J]. Journal of Computer Applications, 2024, 44(10): 3252-3259. |
[15] | Junhao LUO, Yan ZHU. Multi-dynamic aware network for unaligned multimodal language sequence sentiment analysis [J]. Journal of Computer Applications, 2024, 44(1): 79-85. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||