Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (1): 138-144.DOI: 10.11772/j.issn.1001-9081.2023010063
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
Hongbin WANG1,2,3, Xiao FANG1,2,3, Hong JIANG1,2,3()
Received:
2023-01-30
Revised:
2023-05-10
Accepted:
2023-05-12
Online:
2023-06-06
Published:
2024-01-10
Contact:
Hong JIANG
About author:
WANG Hongbin, born in 1983, Ph. D., professor. His research interests include natural language processing, information retrieval, machine learning.Supported by:
通讯作者:
江虹
作者简介:
王红斌(1983—),男,云南曲靖人,教授,博士,CCF会员,主要研究方向:自然语言处理、信息检索、机器学习;基金资助:
CLC Number:
Hongbin WANG, Xiao FANG, Hong JIANG. Commonsense reasoning and question answering method with three-dimensional semantic features[J]. Journal of Computer Applications, 2024, 44(1): 138-144.
王红斌, 房晓, 江虹. 融入三维语义特征的常识推理问答方法[J]. 《计算机应用》唯一官方网站, 2024, 44(1): 138-144.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023010063
数据集 | 样本数 | ||
---|---|---|---|
训练集 | 验证集 | 测试集 | |
CommonsenseQA | 18 241 | 2 442 | 2 381 |
OpenBookQA | 4 957 | 500 | 500 |
Tab. 1 Statistics for experimental datasets
数据集 | 样本数 | ||
---|---|---|---|
训练集 | 验证集 | 测试集 | |
CommonsenseQA | 18 241 | 2 442 | 2 381 |
OpenBookQA | 4 957 | 500 | 500 |
方法 | Dev-Acc | Test-Acc |
---|---|---|
RoBERTa-large (w/o KG) | 73.07 | 68.69 |
R-GCN | 72.69 | 68.41 |
GconAttn | 72.61 | 68.59 |
KagNet | 73.47 | 69.01 |
RN | 74.57 | 69.08 |
MHGRN | 74.45 | 71.11 |
QA-GNN | 76.54 | 73.41 |
DRGN | 78.20 | 74.00 |
本文方法 | 78.24 | 74.15 |
Tab. 2 Accuracy comparison among different methods on CommonsenseQA dataset
方法 | Dev-Acc | Test-Acc |
---|---|---|
RoBERTa-large (w/o KG) | 73.07 | 68.69 |
R-GCN | 72.69 | 68.41 |
GconAttn | 72.61 | 68.59 |
KagNet | 73.47 | 69.01 |
RN | 74.57 | 69.08 |
MHGRN | 74.45 | 71.11 |
QA-GNN | 76.54 | 73.41 |
DRGN | 78.20 | 74.00 |
本文方法 | 78.24 | 74.15 |
方法 | RoBERTa-Large | AristoRoBERTa |
---|---|---|
RoBERTa-large (w/o KG) | 64.80 | 78.40 |
R-GCN | 62.45 | 74.60 |
GconAttn | 64.75 | 71.80 |
RN | 65.20 | 75.35 |
MHGRN | 66.85 | 80.60 |
QA-GNN | 70.58 | 82.77 |
DRGN | 70.10 | 81.80 |
本文方法 | 70.63 | 83.90 |
Tab. 3 Accuracy comparison among different methods on OpenBookQA dataset
方法 | RoBERTa-Large | AristoRoBERTa |
---|---|---|
RoBERTa-large (w/o KG) | 64.80 | 78.40 |
R-GCN | 62.45 | 74.60 |
GconAttn | 64.75 | 71.80 |
RN | 65.20 | 75.35 |
MHGRN | 66.85 | 80.60 |
QA-GNN | 70.58 | 82.77 |
DRGN | 70.10 | 81.80 |
本文方法 | 70.63 | 83.90 |
方法 | Dev-Acc |
---|---|
w/o关系级语义特征 | 77.84 |
w/o实体级语义特征 | 77.73 |
w/o三元组级语义特征 | 77.74 |
w/o关系级&实体级语义特征 | 77.44 |
w/o关系级&三元组级语义特征 | 77.24 |
w/o实体级&三元组级语义特征 | 76.94 |
本文方法 | 78.24 |
Tab. 4 Ablation experiment results of three-dimensional semantic features on CommonsenseQA dataset
方法 | Dev-Acc |
---|---|
w/o关系级语义特征 | 77.84 |
w/o实体级语义特征 | 77.73 |
w/o三元组级语义特征 | 77.74 |
w/o关系级&实体级语义特征 | 77.44 |
w/o关系级&三元组级语义特征 | 77.24 |
w/o实体级&三元组级语义特征 | 76.94 |
本文方法 | 78.24 |
GNN层数 | Dev-Acc | GNN层数 | Dev-Acc |
---|---|---|---|
3 | 75.93 | 6 | 77.68 |
4 | 77.18 | 7 | 77.20 |
5 | 78.24 |
Tab. 5 Comparison of accuracy with different GNN layers
GNN层数 | Dev-Acc | GNN层数 | Dev-Acc |
---|---|---|---|
3 | 75.93 | 6 | 77.68 |
4 | 77.18 | 7 | 77.20 |
5 | 78.24 |
1 | RAJPURKAR P, ZHANG J, LOPYREV K, et al. SQuAD: 100000+ questions for machine comprehension of text [C]// Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2016: 2383-2392. 10.18653/v1/d16-1264 |
2 | MIN S, ZHONG V, ZETTLEMOYER L, et al. Multi-hop reading comprehension through question decomposition and rescoring [C]// Proceedings of the 57th Conference of the Association for Computational Linguistics. Stroudsburg, PA: ACL, 2019: 6097-6109. 10.18653/v1/p19-1613 |
3 | YANG Z, QI P, ZHANG S, et al. HotpotQA: A dataset for diverse, explainable multi-hop question answering [C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2018: 2369-2380. 10.18653/v1/d18-1259 |
4 | TALMOR A, HERZIG J, LOURIE N, et al. CommonsenseQA: A question answering challenge targeting commonsense knowledge [C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1(Long and Short Papers). Stroudsburg, PA: ACL, 2019: 4149-4158. |
5 | YASUNAGA M, REN H, BOSSELUT A, et al. QA-GNN: Reasoning with language models and knowledge graphs for question answering [C]// Proceedings of the 2021 Conference on North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA: ACL, 2021: 535-546. 10.18653/v1/2021.naacl-main.45 |
6 | SUN Y, SHI Q, QI L, et al. JointLK: Joint reasoning with language models and knowledge graphs for commonsense question answering [C]// Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA: ACL, 2022: 5049-5060. 10.18653/v1/2022.naacl-main.372 |
7 | ZHENG C, KORDJAMSHIDI P. Dynamic relevance graph network for knowledge-aware question answering [C]// Proceedings of the 29th International Conference on Computational Linguistics. [S.l.]: International Committee on Computational Linguistics, 2022: 1357-1366. |
8 | 白铂,刘玉婷,马驰骋,等.图神经网络[J].中国科学:数学, 2020, 50(3): 367-384. 10.1360/n012019-00133 |
BAI B, LIU Y T, MA C C, et al. Graph neural network [J]. SCIENTIA SINICA Mathematica, 2020, 50(3): 367-384. 10.1360/n012019-00133 | |
9 | MIHAYLOV T, CLARK P, KHOT T, et al. Can a suit of armor conduct electricity? a new dataset for open book question answering [C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2018: 2381-2391. 10.18653/v1/d18-1260 |
10 | DEVLIN J, CHANG M W, LEE K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding [C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1(Long and Short Papers). Stroudsburg, PA: ACL, 2019: 4171-4186. 10.18653/v1/n18-2 |
11 | FAGHIHI H R, KORDJAMSHIDI P. Time-stamped language model: teaching language models to understand the flow of events [C]// Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA: ACL, 2021: 4560-4570. 10.18653/v1/2021.naacl-main.362 |
12 | LIN B Y, CHEN X, CHEN J, et al. KagNet: Knowledge-aware graph networks for commonsense reasoning [C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg, PA: ACL, 2019: 2829-2839. 10.18653/v1/d19-1282 |
13 | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [EB/OL]. (2017-02-22) [2022-06-20]. . 10.48550/arXiv.1609.02907 |
14 | FENG Y, CHEN X, LIN B Y, et al. Scalable multi-hop relational reasoning for knowledge-aware question answering [C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2020: 1295-1309. 10.18653/v1/2020.emnlp-main.99 |
15 | FANG Y, SUN S, GAN Z, et al. Hierarchical graph network for multi-hop question answering [C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2020: 8823-8838. 10.18653/v1/2020.emnlp-main.710 |
16 | ZHENG C, KORDJAMSHIDI P. SRLGRN: Semantic role labeling graph reasoning network [C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2020: 8881-8891. 10.18653/v1/2020.emnlp-main.714 |
17 | SCHLICHTKRULL M S, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks [C]// Proceedings of the 2018 European Semantic Web Conference, LNCS 10843. Cham: Springer, 2018: 593-607. |
18 | VASHISHTH S, SANYAL S, NITIN V, et al. Composition-based multi-relational graph convolutional networks [EB/OL]. (2020-01-18) [2022-06-20]. . |
19 | SPEER R, CHIN J, HAVASI C. ConceptNet 5.5: An open multilingual graph of general knowledge [C]// Proceedings of the 31st AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2017: 4444-4451. 10.1609/aaai.v31i1.11164 |
20 | LI R, CAO Y, ZHU Q, et al. How does knowledge graph embedding extrapolate to unseen data: a semantic evidence view [C]// Proceedings of the 36th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2022: 5781-5791. 10.1609/aaai.v36i5.20521 |
21 | CHOUDHURY A, SHARMA S, MITRA P, et al. SimCat: An entity similarity measure for heterogeneous knowledge graph with categories [C]// Proceedings of the 2nd ACM IKDD Conference on Data Sciences. New York: ACM, 2015: 112-113. 10.1145/2732587.2732604 |
22 | ZHU G, IGLESIAS C A. Computing semantic similarity of concepts in knowledge graphs [J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(1): 72-85. 10.1109/tkde.2016.2610428 |
23 | HARRIS Z S. Distributional structure [J]. Word, 1954, 10(2/3): 146-162. 10.1080/00437956.1954.11659520 |
24 | SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting [J]. Journal of Machine Learning Research, 2014, 15: 1929-1958. |
25 | LIU L, JIANG H, HE P, et al. On the variance of the adaptive learning rate and beyond [EB/OL]. (2021-10-26) [2022-06-20]. . |
26 | PASCANU R, MIKOLOV T, BENGIO Y. On the difficulty of training recurrent neural networks [C]// Proceedings of the 30th International Conference on Machine Learning. New York: JMLR.org, 2013: 1310-1318. |
27 | SANTORO A, RAPOSO D, BARRETT D G, et al. A simple neural network module for relational reasoning [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 4974-4983. |
28 | WANG X, KAPANIPATHI P, MUSA R, et al. Improving natural language inference using external knowledge in the science questions domain [C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2019: 7208-7215. 10.1609/aaai.v33i01.33017208 |
29 | LIU Y, OTT M, GOYAL N, et al. RoBERTa: A robustly optimized BERT pretraining approach [EB/OL]. (2019-07-26) [2022-06-20]. . |
30 | CLARK P, ETZIONI O, KHASHABI D, et al. From F to A on the New York regents science exams: An overview of the aristo project [J]. AI Magazine, 2020, 41(4): 39-53. 10.1609/aimag.v41i4.5304 |
[1] | Guixiang XUE, Hui WANG, Weifeng ZHOU, Yu LIU, Yan LI. Port traffic flow prediction based on knowledge graph and spatio-temporal diffusion graph convolutional network [J]. Journal of Computer Applications, 2024, 44(9): 2952-2957. |
[2] | Xingyao YANG, Yu CHEN, Jiong YU, Zulian ZHANG, Jiaying CHEN, Dongxiao WANG. Recommendation model combining self-features and contrastive learning [J]. Journal of Computer Applications, 2024, 44(9): 2704-2710. |
[3] | Tingjie TANG, Jiajin HUANG, Jin QIN. Session-based recommendation with graph auxiliary learning [J]. Journal of Computer Applications, 2024, 44(9): 2711-2718. |
[4] | Zhiqiang ZHAO, Peihong MA, Xinhong HEI. Crowd counting method based on dual attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2886-2892. |
[5] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[6] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. |
[7] | Jie WU, Ansi ZHANG, Maodong WU, Yizong ZHANG, Congbao WANG. Overview of research and application of knowledge graph in equipment fault diagnosis [J]. Journal of Computer Applications, 2024, 44(9): 2651-2659. |
[8] | Hang YANG, Wanggen LI, Gensheng ZHANG, Zhige WANG, Xin KAI. Multi-layer information interactive fusion algorithm based on graph neural network for session-based recommendation [J]. Journal of Computer Applications, 2024, 44(9): 2719-2725. |
[9] | Yu DU, Yan ZHU. Constructing pre-trained dynamic graph neural network to predict disappearance of academic cooperation behavior [J]. Journal of Computer Applications, 2024, 44(9): 2726-2731. |
[10] | Yubo ZHAO, Liping ZHANG, Sheng YAN, Min HOU, Mao GAO. Relation extraction between discipline knowledge entities based on improved piecewise convolutional neural network and knowledge distillation [J]. Journal of Computer Applications, 2024, 44(8): 2421-2429. |
[11] | Kaipeng XUE, Tao XU, Chunjie LIAO. Multimodal sentiment analysis network with self-supervision and multi-layer cross attention [J]. Journal of Computer Applications, 2024, 44(8): 2387-2392. |
[12] | Pengqi GAO, Heming HUANG, Yonghong FAN. Fusion of coordinate and multi-head attention mechanisms for interactive speech emotion recognition [J]. Journal of Computer Applications, 2024, 44(8): 2400-2406. |
[13] | Zhonghua LI, Yunqi BAI, Xuejin WANG, Leilei HUANG, Chujun LIN, Shiyu LIAO. Low illumination face detection based on image enhancement [J]. Journal of Computer Applications, 2024, 44(8): 2588-2594. |
[14] | Shangbin MO, Wenjun WANG, Ling DONG, Shengxiang GAO, Zhengtao YU. Single-channel speech enhancement based on multi-channel information aggregation and collaborative decoding [J]. Journal of Computer Applications, 2024, 44(8): 2611-2617. |
[15] | Fan YANG, Yao ZOU, Mingzhi ZHU, Zhenwei MA, Dawei CHENG, Changjun JIANG. Credit card fraud detection model based on graph attention Transformation neural network [J]. Journal of Computer Applications, 2024, 44(8): 2634-2642. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||