[1] ARAQUE O,ZHU G,IGLESIAS C A. A semantic similarity-based perspective of affect lexicons for sentiment analysis[J]. KnowledgeBased Systems,2019,165:346-359. [2] ZHANG S,WEI Z,WANG Y,et al. Sentiment analysis of Chinese micro-blog text based on extended sentiment dictionary[J]. Future Generation Computer Systems,2018,81:395-403. [3] XU G,YU Z,YAO H,et al. Chinese text sentiment analysis based on extended sentiment dictionary[J]. IEEE Access,2019,7:43749-43762. [4] HUNG C. Word of mouth quality classification based on contextual sentiment lexicons[J]. Information Processing and Management, 2017,53(4):751-763. [5] KHOO C S,JOHNKHAN S B. Lexicon-based sentiment analysis:comparative evaluation of six sentiment lexicons[J]. Journal of Information Science,2018,44(4):491-511. [6] SINGH J,SINGH G,SINGH R. Optimization of sentiment analysis using machine learning classifiers[J]. Human-centric Computing and Information Sciences,2017,7:No. 32. [7] ANGGITA,SHARAZITA D,IKMAH. Algorithm comparation of naive Bayes and support vector machine based on particle swarm optimization in sentiment analysis of freight forwarding services[J]. Jurnal RESTI(REkayasa Sistem dan Teknologi Informasi),2020,4(2):362-369. [8] TAMA V O,SIBARONI Y,ADIWIJAYA. Labeling analysis in the classification of product review sentiments by using multinomial naive Bayes algorithm[J]. Journal of Physics:Conference Series, 2019,1192:No. 012036. [9] 陈珂, 梁斌, 柯文德, 等. 基于多通道卷积神经网络的中文微博情感分析[J]. 计算机研究与发展,2018,55(5):945-957. (CHEN K, LIANG B, KE W D, et al. Chinese micro-blog sentiment analysis based on multi-channels convolutional neural networks[J]. Journal of Computer Research and Development, 2018,55(5):945-957.) [10] LONG F,ZHOU K,OU W. Sentiment analysis of text based on bidirectional LSTM with multi-head attention[J]. IEEE Access, 2019,7:141960-141969. [11] 孙凯. 基于词注意力的BiLSTM和CNN集成模型的中文情感分析[J]. 计算机科学与应用,2020,10(2):312-324.(SUN K. Word attention-based BiLSTM and CNN ensemble for Chinese sentiment analysis[J]. Computer Science and Application,2020, 10(2):312-324.) [12] 李洋, 董红斌. 基于CNN和BiLSTM网络特征融合的文本情感分析[J]. 计算机应用,2018,38(11):3075-3080.(LI Y, DONG H B. Text sentiment analysis based on feature fusion of convolution neural network and bidirectional long short-term memory network[J]. Journal of Computer Applications,2018,38(11):3075-3080.) [13] 赵宏, 王乐, 王伟杰. 基于BiLSTM-CNN串行混合模型的文本情感分析[J]. 计算机应用,2020,40(1):16-22.(ZHAO H, WANG L,WANG W J. Text sentiment analysis based on serial hybrid model of bi-directional long short-term memory and convolutional neural network[J]. Journal of Computer Applications,2020,40(1):16-22.) [14] WANG J,YU L C,LAI K R,et al. Tree-structured regional CNNLSTM model for dimensional sentiment analysis[J]. IEEE/ACM Transactions on Audio,Speech,and Language Processing,2020, 28:581-591. [15] 卢强, 朱振方, 徐富永, 等. 融合语法规则的Bi-LSTM中文情感分类方法研究[J]. 数据分析与知识发现,2019,3(11):99-107. (LU Q,ZHU Z F,XU F Y,et al. Chinese sentiment classification method with Bi-LSTM and grammar rules[J]. Data Analysis and Knowledge Discovery,2019,3(11):99-107.) [16] 何雪琴, 杨文忠, 吾守尔·斯拉木, 等. 融合句法规则和CNN的旅游评论情感分析[J]. 计算机工程与设计,2019,40(11):3306-3312. (HE X Q,YANG W Z,WUSHOUER S,et al. Sentiment analysis of tourist reviews combined with syntactic rules and CNN[J]. Computer Engineering and Design,2019,40(11):3306-3312.) |