Journal of Computer Applications ›› 2021, Vol. 41 ›› Issue (4): 1055-1063.DOI: 10.11772/j.issn.1001-9081.2020060796
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
CUI Bowen, JIN Tao, WANG Jianmin
Received:
2020-06-11
Revised:
2020-10-13
Online:
2021-04-10
Published:
2020-12-30
Supported by:
通讯作者:
金涛
作者简介:
崔博文(1996—),男,山东烟台人,硕士研究生,主要研究方向:深度学习、医疗大数据;金涛(1980—),男,湖北当阳人,助理研究员,博士,主要研究方向:业务过程管理、工作流、临床路径、大数据、数据安全;王建民(1968—),男,吉林磐石人,教授,博士,主要研究方向:数据管理与信息系统、非结构化数据管理、业务过程与产品生命周期管理、数字版权管理、系统安全、数据库测试。
基金资助:
CLC Number:
CUI Bowen, JIN Tao, WANG Jianmin. Overview of information extraction of free-text electronic medical records[J]. Journal of Computer Applications, 2021, 41(4): 1055-1063.
崔博文, 金涛, 王建民. 自由文本电子病历信息抽取综述[J]. 计算机应用, 2021, 41(4): 1055-1063.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.joca.cn/EN/10.11772/j.issn.1001-9081.2020060796
[1] 陆鹏, 刘金星. 具有自学习能力的电子病历后结构化技术研究[J]. 世界最新医学信息文摘,2018,18(73):192-193.(LU P, LIU J X. Research on post-structuration technology of electronic medical records with self-learning ability[J]. World Latest Medicine Information,2018,18(73):192-193.) [2] TANABE L,XIE N,THOM L H,et al. GENETAG:a tagged corpus for gene/protein named entity recognition[J]. BMC Bioinformatics,2005,6(S1):No. S3. [3] KIM J D,OHTA T,TATEISI Y,et al. GENIA corpus-a semantically annotated corpus for bio-text mining[J]. Bioinformatics,2003,19(S1):i180-i182. [4] UZUNER Ö, SOUTH B R, SHEN S, et al. 2010 i2b2/VA challenge on concepts,assertions,and relations in clinical text[J]. Journal of the American Medical Informatics Association,2011,18(5):552-556. [5] DOĞAN R I,LEAMAN R,LU Z. NCBI disease corpus:a resource for disease name recognition and concept normalization[J]. Journal of Biomedical Informatics,2014,47:1-10. [6] FRIEDMAN C,ALDERSON P O,AUSTIN J H,et al. A general natural-language text processor for clinical radiology[J]. Journal of the American Medical Informatics Association, 1994, 1(2):161-174. [7] CODEN A, SAVOVA G, SOMINSKY I, et al. Automatically extracting cancer disease characteristics from pathology reports into a disease knowledge representation model[J]. Journal of Biomedical Informatics,2009,42(5):937-949. [8] SAVOVA G K,MASANZ J J,OGREN P V,et al. Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES):architecture,component evaluation and applications[J]. Journal of the American Medical Informatics Association,2010,17(5):507-513. [9] 张立君. 电子病历数据的结构化分析与研究[D]. 青岛:青岛科技大学,2018:14-15. (ZHANG L J. Structural analysis and research of electronic medical record data[D]. Qingdao:Qingdao University of Science and Technology,2018:14-15.) [10] ZHOU G,SHEN D,ZHANG J,et al. Recognition of protein/gene names from text using an ensemble of classifiers[J]. BMC Bioinformatics,2005,6(S1):No. S7. [11] DE BRUIJN B,CHERRY C,KIRITCHENKO S,et al. Machinelearned solutions for three stages of clinical information extraction:the state of the art at i2b22010[J]. Journal of the American Medical Informatics Association,2011,18(5):557-562. [12] FINKEL J,DINGARE S,MANNING C D,et al. Exploring the boundaries:gene and protein identification in biomedical text[J]. BMC Bioinformatics,2005,6(S1):No. S5. [13] SAHA S K,SARKAR S,MITRA P. Feature selection techniques for maximum entropy based biomedical named entity recognition[J]. Journal of Biomedical Informatics,2009,42(5):905-911. [14] LI D,SAVOVA G,KIPPER-SCHULER K. Conditional random fields and support vector machines for disorder named entity recognition in clinical texts[C]//Proceedings of the 2008 Workshop on Current Trends in Biomedical Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics,2008:94-95. [15] JIANG M,CHEN Y,LIU M,et al. A study of machine-learningbased approaches to extract clinical entities and their assertions from discharge summaries[J]. Journal of the American Medical Informatics Association,2011,18(5):601-606. [16] JONNALAGADDA S, COHEN T, WU S, et al. Enhancing clinical concept extraction with distributional semantics[J]. Journal of Biomedical Informatics,2012,45(1):129-140. [17] LEI J,TANG B,LU X,et al. A comprehensive study of named entity recognition in Chinese clinical text[J]. Journal of the American Medical Informatics Association, 2014, 21(5):808-814. [18] 曲春燕. 中文电子病历命名实体识别研究[D]. 哈尔滨:哈尔滨工业大学,2015:1-48.(QU C Y. Research on named entity recognition for Chinese electronic medical records[D]. Harbin:Harbin Institute of Technology,2015:1-48.) [19] LING Y,HASAN S A,FARRI O,et al. A domain knowledgeenhanced LSTM-CRF model for disease named entity recognition[J]. AMIA Joint Summits on Translational Science Proceedings, 2019,2019:761-770. [20] CAI X,DONG S,HU J. A deep learning model incorporating part of speech and self-matching attention for named entity recognition of Chinese electronic medical records[J]. BMC Medical Informatics and Decision Making,2019,19(S2):No. 65. [21] 李剑风. 融合外部知识的中文命名实体识别研究及其医疗领域应用[D]. 哈尔滨:哈尔滨工业大学,2016:1-55.(LI J F. Research on Chinese named entity recognition with external knowledge and application in medical field[D]. Harbin:Harbin Institute of Technology,2016:1-55.) [22] LI J,ZHAO S,YANG J,et al. WCP-RNN:a novel RNN-based approach for Bio-NER in Chinese EMRs[J]. The Journal of Supercomputing,2020,76(3):1450-1467. [23] LYU C,CHEN B,REN Y,et al. Long short-term memory RNN for biomedical named entity recognition[J]. BMC Bioinformatics, 2017,18:No. 462. [24] UNANUE I J,BORZESHI E Z,PICCARDI M. Recurrent neural networks with specialized word embeddings for health-domain named-entity recognition[J]. Journal of Biomedical Informatics, 2017,76:102-109. [25] GREENBERG N, BANSAL T, VERGA P, et al. Marginal likelihood training of BiLSTM-CRF for biomedical named entity recognition from disjoint label sets[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics, 2018:2824-2829. [26] 李慧林, 柴玉梅, 孙穆祯. 面向文本命名实体识别的深层网络模型[J]. 小型微型计算机系统,2019,40(1):50-57.(LI H L, CHAI Y M,SUN M Z. Deep network model for text named entity recognition[J]. Journal of Chinese Computer Systems,2019,40(1):50-57.) [27] CHOWDHURY S,DONG X,QIAN L,et al. A multitask bidirectional RNN model for named entity recognition on Chinese electronic medical records[J]. BMC Bioinformatics,2018,19(S17):No. 499. [28] 曹春萍, 关鹏举. 基于E-CNN和BLSTM-CRF的临床文本命名实体识别[J]. 计算机应用研究,2019,36(12):3748-3751. (CAO C P,GUAN P J. Clinical text named entity recognition based on E-CNN and BLSTM-CRF[J]. Application Research of Computers,2019,36(12):3748-3751.) [29] CASILLAS A,EZEIZA N,GOENAGA I,et al. Measuring the effect of different types of unsupervised word representations on medical named entity recognition[J]. International Journal of Medical Informatics,2019,129:100-106. [30] DONG X,CHOWDHURY S,QIAN L,et al. Deep learning for named entity recognition on Chinese electronic medical records:combining deep transfer learning with multitask bi-directional LSTM RNN[J]. PLoS ONE,2019,14(5):No. e0216046. [31] JI B,LIU R,LI S,et al. A hybrid approach for named entity recognition in Chinese electronic medical record[J]. BMC Medical Informatics and Decision Making, 2019, 19(S2):No. 64. [32] GE S,WU F,WU C,et al. FedNER:medical named entity recognition with federated learning[EB/OL].[2020-03-20]. https://arxiv.org/pdf/2003.09288.pdf. [33] JI B,LI S,YU J,et al. Research on Chinese medical named entity recognition based on collaborative cooperation of multiple neural network models[J]. Journal of Biomedical Informatics, 2020,104:No. 103395. [34] YU X, HU W, LU S, et al. BioBERT based named entity recognition in electronic medical record[C]//Proceedings of the 10th International Conference on Information Technology in Medicine and Education. Piscataway:IEEE,2019:49-52. [35] MAO J,LIU W. Hadoken:a BERT-CRF model for medical document anonymization[C]//Proceedings of the 2019 Iberian Languages Evaluation Forum. Aachen:CEUR-WS. org,2019:720-726. [36] ZHANG Z, ZHANG Y, ZHOU T, et al. Medical assertion classification in Chinese EMRs using attention enhanced neural network[J]. Mathematical Biosciences and Engineering,2019,16(4):1966-1977. [37] JOHNSON A E W,POLLARD T J,SHEN L,et al. MIMIC-III,a freely accessible critical care database[J]. Scientific Data,2016, 3:No. 160035. [38] JOHNSON A E W,POLLARD T J,BERKOWITZ S J,et al. MIMIC-CXR,a de-identified publicly available database of chest radiographs with free-text reports[J]. Scientific Data,2019,6(1):No. 317. [39] CHAPMAN W W,BRIDEWELL W,HANBURY P,et al. A simple algorithm for identifying negated findings and diseases in discharge summaries[J]. Journal of Biomedical Informatics, 2001,34(5):301-310. [40] HARKEMA H, DOWLING J N, THORNBLADE T, et al. ConText:an algorithm for determining negation,experiencer,and temporal status from clinical reports[J]. Journal of Biomedical Informatics,2009,42(5):839-851. [41] MEHRABI S, KRISHNAN A, SOHN S, et al. DEEPEN:a negation detection system for clinical text incorporating dependency relation into NegEx[J]. Journal of Biomedical Informatics,2015,54:213-219. [42] SOHN S,WU S,CHUTE C G. Dependency parser-based negation detection in clinical narratives[J]. AMIA Summits on Translational Science Proceedings,2012,2012:1-8. [43] GROUIN C,ABACHA A B,BERNHARD D,et al. CARAMBA:concept, assertion, and relation annotation using machinelearning based approaches[EB/OL].[2020-03-20]. https://perso.limsi.fr/annlor/docs/grouin-et-al_2010_i2b2.pdf. [44] LIVENTSEV V,FEDULOVA I,DYLOV D. Deep text prior:weakly supervised learning for assertion classification[C]//Proceedings of the 2019 International Conference on Artificial Neural Networks, LNCS 11731. Cham:Springer, 2019:243-257. [45] 杨锦锋, 于秋滨, 关毅, 等. 电子病历命名实体识别和实体关系抽取研究综述[J]. 自动化学报,2014,40(8):1537-1562. (YANG J F,YU Q B,GUAN Y,et al. An overview of research on electronic medical record oriented named entity recognition and entity relation extraction[J]. Acta Automatica Sinica,2014,40(8):1537-1562.) [46] 吴嘉伟, 关毅, 吕新波. 基于深度学习的电子病历中实体关系抽取[J]. 智能计算机与应用,2014,4(3):35-38,41.(WU J W, GUAN Y, LYU X B. A deep learning approach in relation extraction in EMRs[J]. Intelligent Computer and Applications, 2014,4(3):35-38,41.) [47] WANG X, CHUSED A, ELHADAD N, et al. Automated knowledge acquisition from clinical narrative reports[J]. AMIA Annual Symposium Proceedings,2008,2008:783-787. [48] NIKFARJAM A, EMADZADEH E, GONZALEZ G. Towards generating a patient's timeline:extracting temporal relationships from clinical notes[J]. Journal of Biomedical Informatics,2013, 46(S):S40-S47. [49] KIM J,CHOE Y,MUELLER K. Extracting clinical relations in electronic health records using enriched parse trees[J]. Procedia Computer Science,2015,53:274-283. [50] LV X,GUAN Y,YANG J,et al. Clinical relation extraction with deep learning[J]. International Journal of Hybrid Information Technology,2016,9(7):237-248. [51] SAHU S,ANAND A,ORUGANTY K,et al. Relation extraction from clinical texts using domain invariant convolutional neural network[C]//Proceedings of the 15th Workshop on Biomedical Natural Language Processing. Stroudsburg,PA:Association for Computational Linguistics,2016:206-215. [52] ZHANG Z,ZHOU T,ZHANG Y,et al. Attention-based deep residual learning network for entity relation extraction in Chinese EMRs[J]. BMC Medical Informatics and Decision Making,2019, 19(S2):No. 55. [53] DLIGACH D,MILLER T,LIN C,et al. Neural temporal relation extraction[C]//Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics,2017:746-751. [54] CHRISTOPOULOU F,TRAN T T,SAHU S K,et al. Adverse drug events and medication relation extraction in electronic health records with ensemble deep learning methods[J]. Journal of the American Medical Informatics Association,2020,27(1):39-46. [55] SONG L,ZHANG Y,GILDEA D,et al. Leveraging dependency forest for neural medical relation extraction[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing/Proceedings of the 9th International Joint Conference on Natural Language Processing. Stroudsburg,PA:Association for Computational Linguistics,2019:208-218. [56] XUE K,ZHOU Y,MA Z,et al. Fine-tuning BERT for joint entity and relation extraction in Chinese medical text[C]//Proceedings of the 2019 IEEE International Conference on Bioinformatics and Biomedicine. Piscataway:IEEE,2019:892-897. [57] ZHANG H,YU H,XIONG D,et al. HHMM-based Chinese lexical analyzer ICTCLAS[C]//Proceedings of the 2nd SIGHAN Workshop on Chinese Language Processing. Stroudsburg,PA:Association for Computational Linguistics,2003:184-187. [58] 鄂海红, 张文静, 肖思琪, 等. 深度学习实体关系抽取研究综述[J]. 软件学报,2019,30(6):1793-1818.(E H H,ZHANG W J,XIAO S Q,et al. Survey of entity relationship extraction based on deep learning[J]. Journal of Software,2019,30(6):1793-1818.) [59] ZHENG S,WANG F,BAO H,et al. Joint extraction of entities and relations based on a novel tagging scheme[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics,2017:1227-1236. [60] LIU M,ZHANG Y,LI W,et al. Joint model of entity recognition and relation extraction with self-attention mechanism[J]. ACM Transactions on Asian and Low-Resource Language Information Processing,2020,19(4):No. 59. [61] EBERTS M,ULGES A. Span-based joint entity and relation extraction with transformer pre-training[EB/OL].[2020-03-20]. https://arxiv.org/pdf/1909.07755.pdf. [62] BHATIA P,CELIKKAYA E B,KHALILIA M. End-to-end joint entity extraction and negation detection for clinical text[C]//Proceedings of the 2019 International Workshop on Health Intelligence,SCI 843. Cham:Springer,2019:139-148. [63] HAN X,ZHU H,YU P,et al. FewRel:a large-scale supervised few-shot relation classification dataset with state-of-the-art evaluation[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics,2018:4803-4809. [64] ZHANG Y,YANG J. Chinese NER using lattice LSTM[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics,2018:1554-1564. |
[1] | WU Guoliang, XU Jining. Chinese emergency event extraction method based on named entity recognition task feedback enhancement [J]. Journal of Computer Applications, 2021, 41(7): 1891-1896. |
[2] | XU Li, LI Jianhua. Biomedical named entity recognition with graph network based on syntactic dependency parsing [J]. Journal of Computer Applications, 2021, 41(2): 357-362. |
[3] | WU Xiaoping, ZHANG Qiang, ZHAO Fang, JIAO Lin. Entity relation extraction method for guidelines of cardiovascular disease based on bidirectional encoder representation from transformers [J]. Journal of Computer Applications, 2021, 41(1): 145-149. |
[4] | ZHANG Xinyi, FENG Shimin, DING Enjie. Entity recognition and relation extraction model for coal mine [J]. Journal of Computer Applications, 2020, 40(8): 2182-2188. |
[5] | WANG Yue, WANG Mengxuan, ZHANG Sheng, DU Wen. Alarm text named entity recognition based on BERT [J]. Journal of Computer Applications, 2020, 40(2): 535-540. |
[6] | CHEN Jiafeng, TENG Chong. Joint entity and relation extraction model based on reinforcement learning [J]. Journal of Computer Applications, 2019, 39(7): 1918-1924. |
[7] | YAN Hong, CHEN Xingshu, WANG Wenxian, WANG Haizhou, YIN Mingyong. Recognition model for French named entities based on deep neural network [J]. Journal of Computer Applications, 2019, 39(5): 1288-1292. |
[8] | XU Jian, CHEN Zhide, GONG Ping, WANG Keke. Secure storage and access scheme for medical records based on blockchain [J]. Journal of Computer Applications, 2019, 39(5): 1500-1506. |
[9] | LUO Ming, HUANG Hailiang. Information extraction method of financial events based on lexical-semantic pattern [J]. Journal of Computer Applications, 2018, 38(1): 84-90. |
[10] | XIANG Jingjing, GENG Guanggang, LI Xiaodong. Key information extraction algorithm of news Web pages [J]. Journal of Computer Applications, 2016, 36(8): 2082-2086. |
[11] | ZHANG Zhihua, WANG Jianxiang, TIAN Junfeng, WU Guoshun, LAN Man. Blocked person relation recognition system based on multiple features [J]. Journal of Computer Applications, 2016, 36(3): 751-757. |
[12] | MA Jianhong, ZHANG Mingyue, ZHAO Yanan. Patent knowledge extraction method for innovation design [J]. Journal of Computer Applications, 2016, 36(2): 465-471. |
[13] | LI Rujun, ZHANG Jun, ZHANG Xiaomin, GUI Xiaoqing. Web information extraction in health field [J]. Journal of Computer Applications, 2016, 36(1): 163-170. |
[14] | YANG Yipu, YANG Fan, PAN Guofeng, ZHANG Huimin. River information extraction from high resolution remote sensing image based on homomorphic system filtering [J]. Journal of Computer Applications, 2016, 36(1): 248-253. |
[15] | ZHOU Xiang, LI Shaobo, YANG Guanci. Entity recognition of clothing commodity attributes [J]. Journal of Computer Applications, 2015, 35(7): 1945-1949. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||