[1] ZOU Q,XIE S,LIN Z,et al. Finding the best classification threshold in imbalanced classification[J]. Big Data Research, 2016,5:2-8. [2] SHILASKAR S, GHATOL A, CHATUR P. Medical decision support system for extremely imbalanced datasets[J]. Information Sciences,2017,384:205-219. [3] ZAKARYAZAD A,DUMAN E. A profit-driven Artificial Neural Network (ANN) with applications to fraud detection and direct marketing[J]. Neurocomputing,2016,175:121-131. [4] ZHONG W, RAAHEMI B, LIU J. Classifying peer-to-peer applications using imbalanced concept-adapting very fast decision tree on IP data stream[J]. Peer-to-Peer Networking and Applications,2013,6(3):233-246. [5] WANG F,XU T,TANG T,et al. Bilevel feature extraction-based text mining for fault diagnosis of railway systems[J]. IEEE Transactions on Intelligent Transportation Systems,2017,18(1):49-58. [6] 李艳霞, 柴毅, 胡友强, 等. 不平衡数据分类方法综述[J]. 控制与决策, 2019, 34(4):673-688.(LI Y X,CHAI Y,HU Y Q,et al. Review of imbalanced data classification methods[J]. Control and Decision,2019,34(4):673-688.) [7] TOMEK I. Two modifications of CNN[J]. IEEE Transactions on Systems,Man,and Cybernetics,1976,SMC-6(11):769-772. [8] 吴园园, 申立勇. 基于类重叠度欠采样的不平衡模糊多类支持向量机[J]. 中国科学院大学学报, 2018, 35(4):536-543.(WU Y Y,SHEN L Y. Imbalanced fuzzy multiclass support vector machine algorithm based on class-overlap degree undersampling[J]. Journal of University of Chinese Academy of Sciences,2018,35(4):536-543.) [9] CHAWLA N V,BOWYER K W,HALL L O,et al. SMOTE:synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research,2002,16(1):321-357. [10] HE H, BAI Y, GARCIA E A, et al. ADASYN:adaptive synthetic sampling approach for imbalanced learning[C]//Proceedings of the 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence). Piscataway:IEEE,2008:1322-1328. [11] BATISTA G E A P A,PRATI R C,MONARD M C. A study of the behavior of several methods for balancing machine learning training data[J]. ACM SIGKDD Explorations Newsletter,2004,6(1):20-29. [12] DHAR S,CHERKASSKY V. Development and evaluation of costsensitive universum-SVM[J]. IEEE Transactions on Cybernetics, 2015,45(4):806-818. [13] MALDONADO S, MONTECINOS C. Robust classification of imbalanced data using one-class and two-class SVM-based multiclassifiers[J]. Intelligent Data Analysis,2014,18(1):95-112. [14] DUFRENOIS F. A one-class kernel fisher criterion for outlier detection[J]. IEEE Transactions on Neural Networks and Learning Systems,2015,26(5):982-994. [15] GALAR M,FERNÁNDEZ A,BARRENECHEA E,et al. A review on ensembles for the class imbalance problem:Bagging-, Boosting-,and hybrid-based approaches[J]. IEEE Transactions on Systems,Man and Cybernetics,Part C (Applications and Reviews),2012,42(4):463-484. [16] FREUND Y,SCHAPIRE R E. A decision-theoretic generalization of on-line learning and an application to Boosting[J]. Journal of Computer and System Sciences,1997,55(1):119-139. [17] CHAWLA N V, LAZAREVIC A, HALL L O, et al. SMOTEBoost:improving prediction of the minority class in Boosting[C]//Proceedings of the 2003 European Conference on Principles of Data Mining and Knowledge Discovery,LNCS 2838. Berlin:Springer,2003:107-119. [18] FREUND Y,SCHAPIRE R E. Experiments with a new boosting algorithm[C]//Proceedings of the 13th International Conference on Machine Learning. San Francisco, CA:Morgan Kaufmann Publishers Inc.,1996:148-156. [19] SEIFFERT C,KHOSHGOFTAAR T M,VAN HULSE J,et al. RUSBoost:a hybrid approach to alleviating class imbalance[J]. IEEE Transactions on Systems,Man,and Cybernetics-Part A:Systems and Humans,2010,40(1):185-197. [20] RAYHAN F,AHMED S,MAHBUB A,et al. CUSBoost:clusterbased under-sampling with boosting for imbalanced classification[C]//Proceedings of the 2nd International Conference on Computational Systems and Information Technology for Sustainable Solution. Piscataway:IEEE,2017:1-5. [21] FENG W, HUANG W, REN J. Class imbalance ensemble learning based on the margin theory[J]. Applied Sciences,2018, 8(5):Article No. 815. [22] 陈圣灵, 沈思淇, 李东升. 基于样本权重更新的不平衡数据集成学习方法[J]. 计算机科学, 2018, 45(7):31-37.(CHEN S L, SHEN S Q,LI D S. Ensemble learning method for imbalanced data based on sample weight updating[J]. Computer Science, 2018,45(7):31-37.) [23] FAN W, STOLFO S J, ZHANG J, et al. AdaCost:misclassification cost-sensitive boosting[C]//Proceedings of the 16th International Conference on Machine Learning. San Francisco, CA:Morgan Kaufmann Publishers Inc., 1999:97-105. |