[1] LING H. Innovative exploration on empowering students to study and propagandize the new thought under the Internet thinking taking Xi Jinping thought on the socialism with Chinese characteristics in a new era as an example[J]. PEOPLE:International Journal of Social Sciences,2018,4(3):1395-1408. [2] 刘家益, 邹益民. 近70年文本自动摘要研究综述[J]. 情报科学,2017,35(7):154-161.(LIU J Y,ZOU Y M. A review of automatic text summarization research in recent 70 years[J]. Information Science,2017,35(7):154-161.) [3] 吴云, 杨长春, 梅佳俊, 等. 词句协同自动摘要提取方法[J]. 计算机工程与设计,2018,39(9):2776-2779,2810.(WU Y, YANG C C,MEI J J,et al. Method of automatic summarization algorithm based on word-sentence co-ranking[J]. Computer Engineering and Design,2018,39(9):2776-2779,2810.) [4] WEI R,HUANG H,GAO Y. Sharing pre-trained BERT decoder for a hybrid summarization[C]//Proceedings of the 2019 China National Conference on Chinese Computational Linguistics,LNCS 11856. Cham:Springer,2019:169-180. [5] 石磊, 阮选敏, 魏瑞斌, 等. 基于序列到序列模型的生成式文本摘要研究综述[J]. 情报学报,2019,38(10):1102-1116.(SHI L,RUAN X M,WEI R B,et al. Abstractive summarization based on sequence to sequence models:a review[J]. Journal of the China Society for Scientific and Technical Information,2019,38(10):1102-1116.) [6] 戴天, 吴渝, 雷大江. 利用组合模型生成微博热点话题事件摘要[J]. 计算机应用研究,2016,33(7):2026-2029,2038.(DAI T, WU Y,LEI D J. Hot topic summarization on microblog generated by model combination[J]. Application Research of Computers, 2016,33(7):2026-2029,2038.) [7] IBOI H,CHUA S,RANAIVO-MALANÇON B,et al. Performance of opinion summarization towards extractive summarization[J]. Journal of Telecommunication, Electronic and Computer Engineering,2017,9(2-10):57-64. [8] LUHN H P. The automatic creation of literature abstracts[J]. IBM Journal of Research and Development,1958,2(2):159-165. [9] 侯圣峦, 张书涵, 费超群. 文本摘要常用数据集和方法研究综述[J]. 中文信息学报,2019,33(5):1-16.(HOU S L,ZHANG S H,FEI C Q. A survey to text summarization:popular datasets and methods[J]. Journal of Chinese Information Processing,2019,33(5):1-16.) [10] LERMAN K, BLAIR-GOLDENSOHN S, MCDONALD R. Sentiment summarization:evaluating and learning user preferences[C]//Proceedings of the 12th Conference of the European Chapter of the Association for Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics,2009:514-522. [11] LIU L,LU Y,YANG M,et al. Generative adversarial network for abstractive text summarization[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA:AAAI Press,2018:8109-8110. [12] AL-SABAHI K, ZHANG Z, NADHER M. A Hierarchical Structured Self-Attentive model for extractive document Summarization (HSSAS)[J]. IEEE Access,2018,6:24205-24212. [13] SLAMET C, ATMADIA A R, MAYLAWATI D S, et al. Automated text summarization for Indonesian article using vector space model[J]. IOP Conference Series:Materials Science and Engineering,2018,288:No. 012037. [14] ALGULIYEV R M,ALIGULIYEV R M,ISAZADE N R,et al. COSUM:text summarization based on clustering and optimization[J]. Expert Systems,2019,36(1):e12340. [15] CHO K, VAN MERRIËNBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics, 2014:1724-1734. [16] SUTSKEVER I,VINYALS O,LE Q V. Sequence to sequence learning with neural networks[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge:MIT Press,2014:3104-3112. [17] TAN J,WAN X,XIAO J. Abstractive document summarization with a graph-based attentional neural model[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics,2017:1171-1181. [18] SIDDIQUI T,SHAMSI J A. Generating abstractive summaries using sequence to sequence attention model[C]//Proceedings of the 2018 International Conference on Frontiers of Information Technology. Piscataway:IEEE,2018:212-217. [19] CELIKYILMAZ A, BOSSELUT A, HE X, et al. Deep communicating agents for abstractive summarization[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. Stroudsburg,PA:Association for Computational Linguistics,2018:1662-1675. [20] KHAN A,SALIM N,JAYA KUMAR Y. A framework for multidocument abstractive summarization based on semantic role labelling[J]. Applied Soft Computing,2015,30:737-747. [21] 江跃华, 丁磊, 李娇娥, 等. 融合词汇特征的生成式摘要模型[J]. 河北科技大学学报,2019,40(2):152-158.(JIANG Y H, DING L, LI J E, et al. Abstractive summarization model considering hybrid lexical features[J]. Journal of Hebei University of Science and Technology,2019,40(2):152-158.) [22] HUA L,WAN X,LI L. Overview of the NLPCC 2017 shared task:single document summarization[C]//Proceedings of the 2017 National CCF Conference on Natural Language Processing and Chinese Computing,LNCS 10619. Cham:Springer,2017:942-947. [23] SEE A, LIU P J, MANNING C D. Get to the point:summarization with pointer-generator networks[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics,2017:1073-1083. [24] 侯丽微, 胡珀, 曹雯琳. 主题关键词信息融合的中文生成式自动摘要研究[J]. 自动化学报,2019,45(3):530-539.(HOU L W, HU P, CAO W L. Automatic Chinese abstractive summarization with topical keywords fusion[J]. Acta Automatica Sinica,2019,45(3):530-539.) |