[1] NI P S,MIAO C,TANG H,et al. Small foreign object debris detection for millimeter-wave radar based on power spectrum features[J]. Sensors,2020,20(8):No. 2316. [2] 吉训生, 滕彬. 基于深度神经网络的扶梯异常行为检测[J]. 激光与光电子学进展,2020,57(6):No. 061010.(JI X S,TENG B. Detection of abnormal escalator behavior based on deep neural network[J]. Laser and Optoelectronics Progress,2020,57(6):No. 061010.) [3] CHANDOLA V,BANERJEE A,KUMAR V. Anomaly detection:a survey[J]. ACM Computing Surveys,2009,41(3):No. 15. [4] KWON D,KIM H,KIM J,et al. A survey of deep learning-based network anomaly detection[J]. Cluster Computing,2017,22(S1):949-961. [5] LITJENS G,KOOI T,BEJNORDI B E,et al. A survey on deep learning in medical image analysis[J]. Medical Image Analysis, 2017,42:60-88. [6] KHALEGHI A, MOIN M S. Improved anomaly detection in surveillance videos based on a deep learning method[C]//Proceedings of the 8th Conference of AI & Robotics/10th RoboCup Iranopen International Symposium. Piscataway:IEEE, 2018:73-81. [7] GÓMEZ J A,ARÉVALO J,PAREDES R,et al. End-to-end neural network architecture for fraud scoring in card payments[J]. Pattern Recognition Letters,2018,105:175-181. [8] MARKOU M,SINGH S. Novelty detection:a review-part 1:statistical approaches[J]. Signal Processing,2003,83(12):2481-2497. [9] MARKOU M,SINGH S. Novelty detection:a review-part 2:neural network based approaches[J]. Signal Processing,2003,83(12):2499-2521. [10] 吴镜锋, 金炜东, 唐鹏. 数据异常的监测技术综述[J]. 计算机科学,2017,44(11A):24-28.(WU J F,JIN W D,TANG P. Survey on monitoring techniques for data abnormalities[J]. Computer Science,2017,44(11A):24-28.) [11] TAX D M J,DUIN R P W. Support vector data description[J]. Machine Learning,2004,54(1):45-66. [12] TURKOZ M,KIM S,SON Y,et al. Generalized support vector data description for anomaly detection[J]. Pattern Recognition, 2020,100:No. 107119. [13] WU M R,YE J P. A small sphere and large margin approach for novelty detection using training data with outliers[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2009, 31(11):2088-2092. [14] XIAO Y S,LIU B,CAO L B,et al. Multi-sphere support vector data description for outliers detection on multi-distribution data[C]//Proceedings of the 2009 IEEE International Conference on Data Mining Workshops. Piscataway:IEEE,2009:82-87. [15] LE T,TRAN D,NGUYEN P,et al. Multiple distribution data description learning method for novelty detection[C]//Proceedings of the 2011 International Joint Conference on Neural Networks. Piscataway:IEEE,2011:2321-2326. [16] 杨小明, 胡文军, 楼俊钢, 等. 局部分块的一类支持向量数据描述[J]. 计算机应用,2015,35(4):1026-1029,1034.(YANG X M,HU W J,LOU J G,et al. One-class support vector data description based on local patch[J]. Journal of Computer Applications,2015,35(4):1026-1029,1034.) [17] 胡文军, 王士同. SVDD的快速实时决策方法[J]. 自动化学报,2011,37(9):1085-1094.(HU W J,WANG S T. Fast realtime decision approach of support vector data description[J]. Acta Automatica Sinica,2011,37(9):1085-1094.) [18] WANG C D,LAI J H. Position regularized support vector domain description[J]. Pattern Recognition,2013,46(3):875-884. [19] CHA M,KIM J S,BAEK J G. Density weighted support vector data description[J]. Expert Systems with Applications,2014,41(7):3343-3350. [20] THARWAT A. Parameter investigation of support vector machine classifier with kernel functions[J]. Knowledge and Information Systems,2019,61(3):1269-1302. [21] SAJAMA,ORLITSKY A. Estimating and computing density based distance metrics[C]//Proceedings of the 22nd International Conference on Machine Learning. New York:ACM, 2005:760-767. [22] PIMENTEL M A F,CLIFTON D A,CLIFTON L,et al. A review of novelty detection[J]. Signal Processing,2014,99:215-249. [23] 李蓉, 叶世伟, 史忠植. SVM-KNN分类器——一种提高SVM分类精度的新方法[J]. 电子学报,2002,30(5):745-748.(LI R, YE S W,SHI Z Z. SVM-KNN classifier-a new method of improving the accuracy of SVM classifier[J]. Acta Electronica Sinica,2002,30(5):745-748.) [24] LI D D,WANG Z,CAO C J,et al. Information entropy based sample reduction for support vector data description[J]. Applied Soft Computing,2018,71:1153-1160. [25] 张雪. 增强型SVDD算法研究[D]. 长春:吉林大学,2018:12-14.(ZHANG X. Research on the algorithm of enhanced SVDD[D]. Changchun:Jilin University,2018:1-46.) [26] HASTIE T, TIBSHIRANI R. Discriminant adaptive nearest neighbor classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,18(6):607-616. [27] LIU F T, TING K M, ZHOU Z H. Isolation forest[C]//Proceedings of the 2008 IEEE International Conference on Data Mining. Piscataway:IEEE,2008:413-422. [28] 胡文军, 王娟, 王培良, 等. 适合大样本的线性SVMs快速集成模型[J]. 计算机科学,2014,41(5):245-249.(HU W J, WANG J,WANG P L,et al. Fast model of ensembling linear support vector machines suitable for large datasets[J]. Computer Science,2014,41(5):245-249.) |