Journal of Computer Applications ›› 2021, Vol. 41 ›› Issue (8): 2294-2305.DOI: 10.11772/j.issn.1001-9081.2020101632
Special Issue: 多媒体计算与计算机仿真; 综述
• Multimedia computing and computer simulation • Previous Articles Next Articles
REN Qiuru1, YANG Wenzhong1, WANG Chuanjian2, WEI Wenyu1, QIAN Yunyun1
Received:
2020-10-20
Revised:
2021-01-04
Online:
2021-01-27
Published:
2021-08-10
Supported by:
任秋如1, 杨文忠1, 汪传建2, 魏文钰1, 钱芸芸1
通讯作者:
杨文忠
作者简介:
任秋如(1995-),女,陕西宝鸡人,硕士研究生,主要研究方向:遥感影像处理及变化检测、深度学习;杨文忠(1971-),男,河南南阳人,副教授,博士,CCF会员,主要研究方向:图像处理、网络舆情、情报分析、信息安全、无线传感器网络;汪传建(1977-),男,安徽怀宁人,教授,博士,CCF会员,主要研究方向:机器学习、深度学习、遥感影像处理;魏文钰(1995-),女,山西孝义人,硕士研究生,主要研究方向:计算机视觉、行人重识别;钱芸芸(1995-),女,甘肃天水人,硕士研究生,主要研究方向:社区发现、主题社区发现、文本挖掘。
基金资助:
CLC Number:
REN Qiuru, YANG Wenzhong, WANG Chuanjian, WEI Wenyu, QIAN Yunyun. Review of remote sensing image change detection[J]. Journal of Computer Applications, 2021, 41(8): 2294-2305.
任秋如, 杨文忠, 汪传建, 魏文钰, 钱芸芸. 遥感影像变化检测综述[J]. 《计算机应用》唯一官方网站, 2021, 41(8): 2294-2305.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2020101632
[1] 史文中, 张鹏林. 光学遥感影像变化检测研究的回顾与展望[J]. 武汉大学学报(信息科学版),2018,43(12):1832-1837. (SHI W Z,ZHANG P L. State-of-the-art remotely sensed imagesbased change detection methods[J]. Geomatics and Information Science of Wuhan University,2018,43(12):1832-1837.) [2] 李德仁. 利用遥感影像进行变化检测[J]. 武汉大学学报(信息科学版),2003,28(S1):7-12.(LI D R. Change detection from remote sensing images[J]. Geomatics and Information Science of Wuhan University,2003,28(S1):7-12.) [3] SINGH A. Digital change detection techniques using remotely sensed data[J]. International Journal of Remote Sensing,1989,10(6):989-1003. [4] GÄRTNER P,FÖRSTER M,KURBAN A,et al. Object based change detection of Central Asian Tugai vegetation with very high spatial resolution satellite imagery[J]. International Journal of Applied Earth Observation and Geoinformation, 2014, 31:110-121. [5] LU P,QIN Y Y,LI Z B,et al. Landslide mapping from multisensor data through improved change detection-based Markov random field[J]. Remote Sensing of Environment,2019,231:No. 111235. [6] LIN Y K,ZHANG L F,WANG N. A new time series change detection method for Landsat land use and land cover change[C]//Proceedings of the 10th International Workshop on the Analysis of Multitemporal Remote Sensing Images. Piscataway:IEEE,2019:1-4. [7] 季顺平, 田思琦, 张驰. 利用全空洞卷积神经元网络进行城市土地覆盖分类与变化检测[J]. 武汉大学学报(信息科学版), 2020,45(2):233-241.(JI S P,TIAN S Q,ZHANG C. Urban land cover classification and change detection using fully atrous convolutional neural network[J]. Geomatics and Information Science of Wuhan University,2020,45(2):233-241.) [8] HUSSAIN M,CHEN D M,CHENG A,et al. Change detection from remotely sensed images:from pixel-based to object-based approaches[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2013,80:91-106. [9] TEWKESBURY A P,COMBER A J,TATE N J,et al. A critical synthesis of remotely sensed optical image change detection techniques[J]. Remote Sensing of Environment,2015,160:1-14. [10] WU C,DU B,CUI X H,et al. A post-classification change detection method based on iterative slow feature analysis and Bayesian soft fusion[J]. Remote Sensing of Environment,2017, 199:241-255. [11] KRIZHEVSKY A,SUTSKEVER I,HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM,2017,60(6):84-90. [12] GONG M G,ZHAO J J,LIU J,et al. Change detection in synthetic aperture radar images based on deep neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems,2016,27(1):125-138. [13] GONG M G,YANG H L,ZHANG P Z. Feature learning and change feature classification based on deep learning for ternary change detection in SAR images[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2017,129:212-225. [14] MOU L C,BRUZZONE L,ZHU X X. Learning spectral-spatialtemporal features via a recurrent convolutional neural network for change detection in multispectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing,2019,57(2):924-935. [15] WEISMILLER R A,KRISTOF S J,SCHOLZ D K,et al. Change detection in coastal zone environments[J]. Photogrammetric Engineering and Remote Sensing,1977,43(12):1533-1539. [16] LEVIN N,KYBA C C M,ZHANG Q L. Remote sensing of night lights-beyond DMSP[J]. Remote Sensing,2019,11(12):No. 1472. [17] 陈征, 胡德勇, 曾文华, 等. 基于TM图像和夜间灯光数据的区域城镇扩张监测——以浙江省为例[J]. 国土资源遥感,2014, 26(1):83-89.(CHEN Z,HU D Y,ZENG W H,et al. TM image and nighttime light data to monitoring regional urban expansion:a case study of Zhejiang Province[J]. Remote Sensing for Land and Resources,2014,26(1):83-89.) [18] FYTSILIS A L,PROKOS A,KOUTROUMBAS K D,et al. A methodology for near real-time change detection between unmanned aerial vehicle and wide area satellite images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 119:165-186. [19] 眭海刚, 冯文卿, 李文卓, 等. 多时相遥感影像变化检测方法综述[J]. 武汉大学学报(信息科学版),2018,43(12):1885-1898.(SUI H G,FENG W Q,LI W Z,et al. Review of change detection methods for multi-temporal remote sensing imagery[J]. Geomatics and Information Science of Wuhan University,2018,43(12):1885-1898.) [20] JOHANSEN K,ARROYO L A,PHINN S,et al. Comparison of geo-object based and pixel-based change detection of riparian environments using high spatial resolution multi-spectral imagery[J]. Photogrammetric Engineering and Remote Sensing,2010,76(2):123-136. [21] 黎夏, 叶嘉安. 利用主成分分析改善土地利用变化的遥感监测精度——以珠江三角洲城市用地扩张为例[J]. 遥感学报, 1997,1(4):282-289.(LI X,YE J A. Accuracy improvement of land use change detection using principal components analysis:a case study in the Pearl River Delta[J]. Journal of Remote Sensing,1997,1(4):282-289.) [22] 黄维, 黄进良, 王立辉, 等. 基于PCA的变化向量分析法遥感影像变化检测[J]. 国土资源遥感,2016,28(1):22-27.(HUANG W,HUANG J L,WANG L H,et al. Remote sensing image change detection based on change vector analysis of PCA component[J]. Remote Sensing for Land and Resources,2016,28(1):22-27.) [23] 唐朴谦, 杨建宇, 张超, 等. 基于像素比值的面向对象分类后遥感变化检测方法[J]. 遥感信息,2010(1):69-72.(TANG P Q, YANG J Y, ZHANG C, et al. An object-oriented postclassification remote sensing change detection after the pixel ratio[J]. Remote Sensing Information,2010(1):69-72.) [24] 黄晓君, 颉耀文, 卫娇娇, 等. 基于变化检测-CART决策树模式自动识别沙漠化信息[J]. 灾害学,2017,32(1):36-42. (HUANG X J,XIE Y W,WEI J J,et al. Automatic recognition of desertification information based on the pattern of change detectionCART decision tree[J]. Journal of Catastrophology,2017,32(1):36-42.) [25] IM J, JENSEN J R. A change detection model based on neighborhood correlation image analysis and decision tree classification[J]. Remote Sensing of Environment,2005,99(3):326-340. [26] WU K,DU Q,WANG Y,et al. Supervised sub-pixel mapping for change detection from remotely sensed images with different resolutions[J]. Remote Sensing,2017,9(3):No. 284. [27] WALTER A,SCHÖNWIESE C D. Attribution and detection of anthropogenic climate change using a backpropagation neural network[J]. Meteorologische Zeitschrift,2002,11(5):335-343. [28] 崔斌, 张永红, 闫利, 等. 一种基于卷积神经网络的SAR变化检测方法[J]. 测绘科学,2019,44(6):170-175,186.(CUI B, ZHANG Y H,YAN L,et al. A method of SAR change detection base on convolutional neural networks[J]. Science of Surveying and Mapping,2019,44(6):170-175,186.) [29] 潘琛, 冯琰, 林怡, 等. 多特征差分核支持向量机模型的湿地变化检测[J]. 测绘科学,2014,39(12):104-108, 119.(PAN C, FENG Y,LIN Y,et al. Wetland change detection using improved SVM model based on multi-feature and differencing kernel[J]. Science of Surveying and Mapping, 2014, 39(12):104-108,119.) [30] BOVOLO F, BRUZZONE L, MARCONCINI M. A novel approach to unsupervised change detection based on a semisupervised SVM and a similarity measure[J]. IEEE Transactions on Geoscience and Remote Sensing,2008,46(7):2070-2082. [31] HABIB T,INGLADA J,MERCIER G,et al. Support vector reduction in SVM algorithm for abrupt change detection in remote sensing[J]. IEEE Geoscience and Remote Sensing Letters,2009, 6(3):606-610. [32] MANCINI A,FRONTONI E,ZINGARETTI P. Road change detection from multi-spectral aerial data[C]//Proceedings of the 20th International Conference on Pattern Recognition. Piscataway:IEEE,2010:448-451. [33] HEGAZY I R,KALOOP M R. Monitoring urban growth and land use change detection with GIS and remote sensing techniques in Daqahlia governorate Egypt[J]. International Journal of Sustainable Built Environment,2015,4(1):117-124. [34] ONUR I,MAKTAV D,SARI M,et al. Change detection of land cover and land use using remote sensing and GIS:a case study in Kemer,Turkey[J]. International Journal of Remote Sensing, 2009,30(7):1749-1757. [35] WALTER V. Object-based classification of remote sensing data for change detection[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2004,58(3/4):225-238. [36] DESCLÉE B, BOGAERT P, DEFOURNY P. Forest change detection by statistical object-based method[J]. Remote Sensing of Environment,2006,102(1/2):1-11. [37] BAZI Y,MELGANI F,AL-SHARARI H D. Unsupervised change detection in multispectral remotely sensed imagery with level set methods[J]. IEEE Transactions on Geoscience and Remote Sensing,2010,48(8):3178-3187. [38] AGUIRRE-GUTIÉRREZ J, SEIJMONSBERGEN A C, DUIVENVOORDEN J F. Optimizing land cover classification accuracy for change detection,a combined pixel-based and objectbased approach in a mountainous area in Mexico[J]. Applied Geography,2012,34:29-37. [39] 窦方正, 孙汉昌, 孙显, 等. 基于DBN与对象融合的遥感图像变化检测方法[J]. 计算机工程,2018,44(4):294-298,304. (DOU F Z,SUN H C,SUN X,et al. Remote sensing image change detection method based on DBN and object fusion[J]. Computer Engineering,2018,44(4):294-298,304.) [40] 李倩兰. 基于层次化自编码的异质遥感图像融合与变化检测[D]. 西安:西安电子科技大学,2018:58-71.(LI Q L. Heterogeneous remote sensing image fusion and change detection based on hierarchical autoencoder[D]. Xi' an:Xidian University, 2018:58-71.) [41] 韩闪闪, 李海涛, 顾海燕. 面向对象的土地利用变化检测方法研究[J]. 遥感信息,2009(3):23-29.(HAN S S,LI H T,GU H Y. The study of land use change detection based on objectoriented analysis[J]. Remote Sensing Information,2009(3):23-29.) [42] JABARI S,ZHANG Y. RPC-based coregistration of VHR imagery for urban change detection[J]. Photogrammetric Engineering and Remote Sensing,2016,82(7):521-534. [43] 顾炼, 许诗起, 竺乐庆. 基于FlowS-Unet的遥感图像建筑物变化检测[J]. 自动化学报,2020,46(6):1291-1300.(GU L,XU S Q,ZHU L Q. Detection of building changes in remote sensing images via FlowS-Unet[J]. Acta Automatica Sinica,2020,46(6):1291-1300.) [44] DAI X L,KHORRAM S. The effects of image misregistration on the accuracy of remotely sensed change detection[J]. IEEE Transactions on Geoscience and Remote Sensing,1998,36(5):1566-1577. [45] 刘占强. 高分辨率遥感图像配准技术的研究[D]. 北京:北京邮电大学,2019:2-6.(LIU Z Q. Research on high resolution remote sensing image registration technology[D]. Beijing:Beijing University of Posts and Telecommunications,2019:2-6.) [46] 高雪艳. 基于遥感图像配准的建筑物变化检测算法研究[D]. 昆明:云南师范大学,2019:8-9.(GAO X Y. Research remote sensing image registration based building change detection algorithm[D]. Kunming:Yunnan Normal University,2019:8-9.) [47] 李明诗, 梅昭容. 土地覆盖变化检测中不同相对辐射归一化方法的评价[J]. 南京林业大学学报(自然科学版),2017,41(4):108-114.(LI M S,MEI Z R. Performance assessment of different relative radiometric normalization approaches applied to land cover change detection[J]. Journal of Nanjing Forestry University (Natural Sciences Edition),2017,41(4):108-114.) [48] 云红全, 章启恒, 田振坡, 等. 基于图像融合的高分全色遥感影像变化检测[J]. 测绘与空间地理信息,2019,42(4):105-109. (YUN H Q,ZHANG Q H,TIAN Z P,et al. Change detection for high resolution panchromatic image based on image fusion[J]. Geomatics and Spatial Information Technology,2019,42(4):105-109.) [49] 佟国峰, 李勇, 丁伟利, 等. 遥感影像变化检测算法综述[J]. 中国图象图形学报,2015,20(12):1561-1571.(TONG G F,LI Y,DING W L,et al. Review of remote sensing image change detection[J]. Journal of Image and Graphics,2015,20(12):1561-1571.) [50] 张晗, 倪维平, 严卫东, 等. 利用分形和多尺度分析的中低分辨率SAR图像变化检测[J]. 武汉大学学报(信息科学版),2016, 41(5):642-648.(ZHANG H,NI W P,YAN W D,et al. Mid and low resolution SAR image change detection based on fractal and multi-scale analysis[J]. Geomatics and Information Science of Wuhan University,2016,41(5):642-648.) [51] KOLLER R,SAMIMI C. Deforestation in the Miombo woodlands:a pixel-based semiautomated change detection method[J]. International Journal of Remote Sensing,2011,32(22):7631-7649. [52] AL RAWASHDEH S B. Evaluation of the differencing pixel-bypixel change detection method in mapping irrigated areas in dry zones[J]. International Journal of Remote Sensing,2011,32(8):2173-2184. [53] PANG S Y,HU X Y,WANG Z Z,et al. Object-based analysis of airborne LiDAR data for building change detection[J]. Remote Sensing,2014,6(11):10733-10749. [54] 佃袁勇, 方圣辉, 姚崇怀. 多尺度分割的高分辨率遥感影像变化检测[J]. 遥感学报,2016,20(1):129-137.(DIAN Y Y, FANG S H,YAO C H. Change detection for high-resolution images using multilevel segment method[J]. Journal of Remote Sensing,2016,20(1):129-137.) [55] MITKARI K V,ARORA M K,TIWARI R K. Detecting glacier surface changes using object-based change detection[C]//Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium. Piscataway:IEEE, 2018:5180-5183. [56] GAO F,DONG J Y,LI B,et al. Change detection from synthetic aperture radar images based on neighborhood-based ratio and extreme learning machine[J]. Journal of Applied Remote Sensing,2016,10(4):No. 046019. [57] HAY G J,NIEMANN K O. Visualizing 3-D texture:a threedimensional structure approach to model forest texture[J]. Canadian Journal of Remote Sensing,1994,20(2):90-101. [58] SHI X J,LU L J,YANG S C,et al. Object-oriented change detection based on weighted polarimetric scattering differences on PolSAR images[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,2015,XL-7/W4:149-154. [59] IM J,JENSEN J R,TULLIS J A. Object-based change detection using correlation image analysis and image segmentation[J]. International Journal of Remote Sensing,2008,29(2):399-423. [60] 冯文卿, 眭海刚, 涂继辉, 等. 高分辨率遥感影像的随机森林变化检测方法[J]. 测绘学报,2017,46(11):1880-1890.(FENG W Q,SUI H G,TU J H,et al. Change detection method for high resolution remote sensing images using random forest[J]. Acta Geodaetica et Cartopraphica Sinica,2017,46(11):1880-1890.) [61] COMBER A,FISHER P,WADSWORTH R. Assessment of a semantic statistical approach to detecting land cover change using inconsistent data sets[J]. Photogrammetric Engineering and Remote Sensing,2004,70(8):931-938. [62] LISTNER C,NIEMEYER I. Object-based change detection[J]. Photogrammetrie-Fernerkundung-Geoinformation,2011(4):233-245. [63] 胡永月, 肖鹏峰, 冯学智, 等. 面向对象变化检测中多时相图像分割模式影响评价[J]. 南京大学学报(自然科学),2015,51(5):1049-1057. (HU Y Y,XIAO P F,FENG X Z,et al. Evaluating the effectiveness of multi-temporal image segmentation on object-based change detection[J]. Journal of Nanjing University(Natural Sciences),2015,51(5):1049-1057.) [64] WU C,ZHANG L P,DU B. Kernel slow feature analysis for scene change detection[J]. IEEE Transactions on Geoscience and Remote Sensing,2017,55(4):2367-2384. [65] DU B,WANG Y,WU C,et al. Unsupervised scene change detection via latent Dirichlet allocation and multivariate alteration detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2018,11(12):4676-4689. [66] 景奉广. 高分辨率遥感图像土地利用变化检测方法研究[D]. 西安:西安科技大学,2008:17-56.(JING F G. Study on land use change detection methods base on high-resolution remote sensing images[D]. Xi' an:Xi' an University of Science and Technology, 2008:17-56.) [67] 李亮, 王蕾, 王凯, 等. 基于像斑异质度的矢量图与遥感影像变化检测[J]. 国土资源遥感,2018,30(1):30-36.(LI L,WANG L,WANG K,et al. A change detection method for vector map and remote sensing imagery based on object heterogeneity[J]. Remote Sensing for Land and Resources,2018,30(1):30-36.) [68] 冯文卿, 眭海刚, 涂继辉, 等. 联合像素级和对象级分析的遥感影像变化检测[J]. 测绘学报,2017,46(9):1147-1155,1164. (FENG W Q,SUI H G,TU J H,et al. Remote sensing image change detection based on the combination of pixel-level and object-level analysis[J]. Acta Geodaetica et Cartopraphica Sinica,2017,46(9):1147-1155,1164.) [69] XIAO P F,ZHANG X L,WANG D G,et al. Change detection of built-up land:a framework of combining pixel-based detection and object-based recognition[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2016,119:402-414. [70] GAMBA P,DELL' ACQUA F,LISINI G. Change detection of multitemporal SAR data in urban areas combining feature-based and pixel-based techniques[J]. IEEE Transactions on Geoscience and Remote Sensing,2006,44(10):2820-2827. [71] LI L, LI X, ZHANG Y, et al. Change detection for highresolution remote sensing imagery using object-oriented change vector analysis method[C]//Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium. Piscataway:IEEE,2016:2873-2876. [72] 张涛, 温素馨. 基于遥感的城市地表覆盖变化检测综述[J]. 现代测绘,2017,40(3):25-28,34.(ZHANG T,WEN S X. Review of urban land cover change detection based on remote sensing[J]. Modern Surveying and Mapping,2017,40(3):25-28,34.) [73] 洪志令, 姜青山, 董槐林, 等. 基于多阈值分割的快速舰船目标检测方法[J]. 计算机科学,2006, 33(11增):273-275.(HONG Z L,JIANG Q S,DONG H L,et al. Fast ship detection based on multi-threshold image segmentation[J]. Computer Science,2006, 33(S11):273-275.) [74] 郭颖. 森林地上生物量的非参数化遥感估测方法优化[D]. 北京:中国林业科学研究院,2011:26-80.(GUO Y. Optimum nonparametric method for forest above ground biomass estimation based on remote sensing data[D]. Beijing:Chinese Academy of Forestry,2011:26-80.) [75] PEIMAN R. Pre-classification and post-classification changedetection techniques to monitor land-cover and land-use change using multi-temporal Landsat imagery:a case study on Pisa Province in Italy[J]. International Journal of Remote Sensing, 2011,32(15):4365-4381. [76] PU R L,GONG P,TIAN Y,et al. Invasive species change detection using artificial neural networks and CASI hyperspectral imagery[J]. Environmental Monitoring and Assessment,2008, 140(1/2/3):15-32. [77] NIELSEN A A,CONRADSEN K,SIMPSON J J. Multivariate Alteration Detection (MAD) and MAF postprocessing in multispectral,bitemporal image data:new approaches to change detection studies[J]. Remote Sensing of Environment,1998,64(1):1-19. [78] 沙志刚. 数字遥感技术在土地利用动态监测中的应用概述[J]. 国土资源遥感,1999(2):7-11.(SHA Z G. The digital remote sensing techniques applied to land use change monitoring[J]. Remote Sensing for Land and Resources,1999(2):7-11.) [79] 朱攀, 廖明生, 杨杰, 等. M变换在NOAA/AVHRR数据变化检测中的应用[J]. 武汉测绘科技大学学报,2000,25(2):143-147.(ZHU P,LIAO M S,YANG J,et al. M transformation used in multivariate change detection of NOAA/AVHRR data[J]. Journal of Wuhan Technical University of Surveying and Mapping, 2000,25(2):143-147.) [80] 崔方宁, 宋晓宇, 孙宝生, 等. 基于多时相TM影像的冬小麦面积变化监测[J]. 遥感信息,2012,27(5):89-95.(CUI F N,SONG X Y,SUN B S,et al. Change detection of winter wheat area based on multi-temporal TM images[J]. Remote Sensing Information,2012,27(5):89-95.) [81] HUANG F H,YU Y,FENG T H. Hyperspectral remote sensing image change detection based on tensor and deep learning[J]. Journal of Visual Communication and Image Representation, 2019,58:233-244. [82] LI H C,YANG G,YANG W,et al. Deep nonsmooth nonnegative matrix factorization network with semi-supervised learning for SAR image change detection[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2020,160:167-179. [83] ROBIN A, MOISAN L, LE HEGARAT-MASCLE S. An acontrario approach for subpixel change detection in satellite imagery[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(11):1977-1993. [84] 王志有, 李欢, 刘自增, 等. 基于深度学习算法的卫星影像变化监测[J]. 计算机系统应用,2020,29(1):40-48.(WAND Z Y, LI H,LIU Z Z,et al. Satellite image change monitoring based on deep learning algorithm[J]. Computer Systems and Applications, 2020,29(1):40-48.) [85] OLOFSSON P,FOODY G M,HEROLD M,et al. Good practices for estimating area and assessing accuracy of land change[J]. Remote Sensing of Environment,2014,148:42-57. [86] 李雪, 舒宁, 王琰, 等. 利用土地利用状态转移分析的变化检测[J]. 武汉大学学报(信息科学版),2011,36(8):952-955,977. (LI X,SHU N,WANG Y,et al. Change detection based on landuse status transition analysis[J]. Geomatics and Information Science of Wuhan University,2011,36(8):952-955,977.) [87] 崔莹, 熊博莅, 蒋咏梅, 等. 结合结构相似度的自适应多尺度SAR图像变化检测[J]. 中国图象图形学报,2014,19(10):1507-1513.(CUI Y,XIONG B L,JIANG Y M,et al. Multi-scale approach based on structure similarity for change detection in SAR images[J]. Journal of Image and Graphics,2014,19(10):1507-1513.) [88] 张良培, 武辰. 多时相遥感影像变化检测的现状与展望[J]. 测绘学报,2017,46(10):1447-1459.(ZHANG L P,WU C. Advance and future development of change detection for multitemporal remote sensing imagery[J]. Acta Geodaetica et Cartographica Sinica,2017,46(10):1447-1459.) [89] 冯文卿, 张永军. 利用多尺度融合进行面向对象的遥感影像变化检测[J]. 测绘学报,2015,44(10):1142-1151.(FENG W Q, ZHANG Y J. Object-oriented change detection for remote sensing images based on multi-scale fusion[J]. Acta Geodaetica et Cartographica Sinica,2015,44(10):1142-1151.) [90] 占昭, 史文中, 张敏. 一种面向地理国情监测的地表覆盖变化检测与更新方法[J]. 测绘地理信息,2020,45(3):24-28. (ZHAN Z,SHI W Z,ZHANG M. A land cover change detection and updating method for geographic national conditions monitoring[J]. Journal of Geomatics,2020,45(3):24-28.) [91] 杜培军, 王欣, 蒙亚平, 等. 面向地理国情监测的变化检测与地表覆盖信息更新方法[J]. 地球信息科学学报,2020,22(4):857-866.(DU P J,WANG X,MENG Y P,et al. Effective change detection approaches for geographic national condition monitoring and land cover map updating[J]. Journal of Geo-information Science,2020,22(4):857-866.) |
[1] | Xue LI, Guangle YAO, Honghui WANG, Jun LI, Haoran ZHOU, Shaoze YE. Remote sensing image classification based on sample incremental learning [J]. Journal of Computer Applications, 2024, 44(3): 732-736. |
[2] | Yuqiu LI, Liping HOU, Jian XUE, Ke LYU, Yong WANG. Remote sensing image recommendation method based on content interpretation [J]. Journal of Computer Applications, 2024, 44(3): 722-731. |
[3] | Ning WU, Yangyang LUO, Huajie XU. Semantic segmentation method for remote sensing images based on multi-scale feature fusion [J]. Journal of Computer Applications, 2024, 44(3): 737-744. |
[4] | Xing WANG, Guijuan LIU, Zhihao CHEN. Fake review detection algorithm combining Gaussian mixture model and text graph convolutional network [J]. Journal of Computer Applications, 2024, 44(2): 360-368. |
[5] | Ziyi LI, Tingting QU, Qianpeng CHONG, Jindong XU. Remote sensing image segmentation network based on fuzzy multiscale features [J]. Journal of Computer Applications, 2024, 44(11): 3581-3586. |
[6] | Kunting LU, Rongrong FEI, Xuande ZHANG. Remote sensing image pansharpening by convolutional neural network [J]. Journal of Computer Applications, 2023, 43(9): 2963-2969. |
[7] | Yongxiang GU, Xin LAN, Boyi FU, Xiaolin QIN. Object detection algorithm for remote sensing images based on geometric adaptation and global perception [J]. Journal of Computer Applications, 2023, 43(3): 916-922. |
[8] | Tengteng WANG, Zhe CUI, Dan TANG. Design scheme of digital review system for online conference based on privacy computing [J]. Journal of Computer Applications, 2023, 43(2): 450-457. |
[9] | Lei ZHONG, Yunsheng ZHOU, Dunhui YU, Haibo CUI. Reviewer recommendation algorithm based on affinity and research direction coverage [J]. Journal of Computer Applications, 2023, 43(2): 430-436. |
[10] | WANG Youxin, CHEN Bin. Print defect detection method based on deep comparison network [J]. Journal of Computer Applications, 2023, 43(1): 250-258. |
[11] | Zhipei YANG, Sheng DING, Li ZHANG, Xinyu ZHANG. Anchor-free remote sensing image detection method for dense objects with rotation [J]. Journal of Computer Applications, 2022, 42(6): 1965-1971. |
[12] | Zhen QU, Kunting LI, Zhixi FENG. Remote sensing image scene classification based on effective channel attention [J]. Journal of Computer Applications, 2022, 42(5): 1431-1439. |
[13] | Haoran LUO, Qing YANG. Sentiment analysis based on sentiment lexicon and stacked residual Bi-LSTM network [J]. Journal of Computer Applications, 2022, 42(4): 1099-1107. |
[14] | Dingkang LIN, Jiaqi YAN, Nandeng BA, Zhenhao FU, Haochen JIANG. Survey of anonymity and tracking technology in Monero [J]. Journal of Computer Applications, 2022, 42(1): 148-156. |
[15] | SONG Zhongshan, LIANG Jiarui, ZHENG Lu, LIU Zhenyu, TIE Jun. Remote sensing scene classification based on bidirectional gated scale feature fusion [J]. Journal of Computer Applications, 2021, 41(9): 2726-2735. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||