[1] GHOLAMI R,MORADZADEH A,RASOULI V,et al. Shear wave velocity prediction using seismic attributes and well log data[J]. Acta Geophysica,2014,62(4):818-848. [2] GRAVES A, JAITLY N, MOHAMED A R. Hybrid speech recognition with deep bidirectional LSTM[C]//Proceedings of the 2013 IEEE Workshop on Automatic Speech Recognition and Understanding. Piscataway:IEEE,2013:273-278. [3] HINTON G E,OSINDERO S,TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation,2006,18(7):1527-1554. [4] SARIKAYA R,HINTON G E,DEORAS A. Application of deep belief networks for natural language understanding[J]. IEEE/ACM Transactions on Audio,Speech,and Language Processing,2014, 22(4):778-784. [5] LeCUN Y,BENGIO Y,HINTON G. Deep learning[J]. Nature, 2015,521(7553):436-444. [6] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM,2017,60(6):84-90. [7] KIROS J R, CHAN W, HINTON G E. Illustrative language understanding:large-scale visual grounding with image search[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics,2018:922-933. [8] MENG F D,CHEN S Y,ZHANG Y C,et al. Characterization of motor oil by laser-induced fluorescence[J]. Analytical Letters, 2015,48(13):2090-2095. [9] CUDJOE S,VINASSA M,HENRIQUE BESSA GOMES J,et al. A comprehensive approach to sweet-spot mapping for hydraulic fracturing and CO2 huff-n-puff injection in Chattanooga shale formation[J]. Journal of Natural Gas Science and Engineering, 2016,33:1201-1218. [10] EBRAHIMI A,KHAMEHCHI E. Developing a novel workflow for natural gas lift optimization using advanced support vector machine[J]. Journal of Natural Gas Science and Engineering,2016,28:626-638. [11] ZHANG J G. Application of gray Elman neural network to predict the gas emission amount[J]. Advanced Materials Research, 2013,706/707/708:1750-1754. [12] 罗浩然, 尹成, 丁峰, 等. 概率神经网络的平滑参数分析及在地震属性分析中的应用[J]. 石油物探,2017,56(4):551-558. (LUO H R,YIN C,DING F,et al. The smoothing parameter analysis of probabilistic neural network and its application in seismic attribute analysis[J]. Geophysical Prospecting for Petroleum,2017,56(4):551-558.) [13] MASOUDI P,TOKHMECHI B,JAFARI M A,et al. Application of fuzzy classifier fusion in determining productive zones in oil wells[J]. Energy Exploration and Exploitation, 2012, 30(3):403-415. [14] 王振洲, 张春雷, 高世臣. 利用决策树方法识别复杂碳酸盐岩岩性——以苏里格气田苏东41-33区块为例[J]. 油气地质与采收率,2017,24(6):25-33.(WANG Z Z,ZHANG C L,GAO S C. Lithology identification of complex carbonate rocks based on decision tree method:an example from Block Sudong41-33 in Sulige Gas Field[J]. Petroleum Geology and Recovery Efficiency,2017,24(6):25-33.) [15] LI Q,ZHONG H Q,WANG Y,et al. Integrated development optimization model and its solving method of multiple gas fields[J]. Petroleum Exploration and Development,2016,43(2):293-300. [16] 印兴耀, 叶端南, 张广智. 基于核空间的模糊聚类方法在储层预测中的应用[J]. 中国石油大学学报(自然科学版),2012,36(1):53-59.(YIN X Y,YE D N,ZHANG G Z. Application of kernel fuzzy C-means method to reservoir prediction[J]. Journal of China University of Petroleum (Edition of Natural Science), 2012,36(1):53-59.) [17] 刘瑞林, 马在田. 神经网络在油气评价和预测方面的研究现状[J]. 地球物理学进展,1995,10(2):75-84.(LIU R L,MA Z T. The current studies of application of neural networks to oil and gas evaluation and prediction[J]. Progress in Geophysics,1995, 10(2):75-84.) [18] 陆文凯, 牟永光. 利用BP神经网络进行测井资料外推[J]. 石油地球物理勘探,1996,31(5):712-715.(LU W K,MOU Y G. Logging data extrapolation using BP neural network[J]. Oil Geophysical Prospecting,1996,31(5):712-715.) [19] 张, 郑晓东, 李劲松, 等. 基于SOM和PSO的非监督地震相分析技术[J]. 地球物理学报,2015,58(9):3412-3423.(ZHANG Y,ZHENG X D,LI J S,et al. Unsupervised seismic facies analysis technology based on SOM and PSO[J]. Chinese Journal of Geophysics,2015,58(9):3412-3423.) [20] 张向君, 李幼铭, 刘洪. 神经网络结构风险最小油气预测[J]. 石油地球物理勘探,2002,37(1):73-76.(ZHANG X J,LI Y M, LIU H. Oil and gas prediction by neural networks with structure-risk-minimum[J]. Oil Geophysical Prospecting,2002, 37(1):73-76.) [21] MOHEBBI A,KAMALPOUR R,KEYVANLOO K,et al. The prediction of permeability from well logging data based on reservoir zoning, using artificial neural networks in one of an Iranian heterogeneous oil reservoir[J]. Petroleum Science and Technology,2012,30(19):1998-2007. [22] 张长开, 姜秀娣, 朱振宇, 等. 基于支持向量机的属性优选和储层预测[J]. 石油地球物理勘探,2012,47(2):282-285. (ZHANG C K,JIANG X D,ZHU Z Y,et al. Attributes selection and reservoir prediction based on support vector machine[J]. Oil Geophysical Prospecting,2012,47(2):282-285.) [23] 王波, 夏同星, 谭辉煌. 基于斑块饱和模型井控属性融合法油气检测[J]. 石油物探,2017,56(2):288-294.(WANG B,XIA T X,TAN H H. The well-controlled attributes fusion method for hydrocarbon detection based on patchy-saturation model[J]. Geophysical Prospecting for Petroleum,2017,56(2):288-294.) [24] 袁照威, 陈龙, 高世臣, 等. 基于马尔可夫-贝叶斯模拟算法的多地震属性沉积相建模方法——以苏里格气田苏区块为例[J]. 油气地质与采收率,2017,24(3):37-43.(YUAN Z W,CHEN L,GAO S C,et al. A method of sedimentary facies modeling through integration of multi-seismic attributes based on MarkovBayes model:an example from Su10 area in the north of Sulige gas field[J]. Petroleum Geology and Recovery Efficiency,2017,24(3):37-43.) [25] 宋建国, 高强山, 李哲. 随机森林回归在地震储层预测中的应用[J]. 石油地球物理勘探,2016,51(6):1202-1211.(SONG J G,GAO Q S,LI Z. Application of random forests for regression to seismic reservoir prediction[J]. Oil Geophysical Prospecting, 2016,51(6):1202-1211.) [26] SAIKIA P,BARUAH R D,SINGH S K,et al. Artificial neural networks in the domain of reservoir characterization:a review from shallow to deep models[J]. Computers and Geosciences,2020, 135:No. 104357. [27] 林年添, 付超, 张栋, 等. 无监督与监督学习下的含油气储层预测[J]. 石油物探,2018,57(4):601-610.(LIN N T,FU C, ZHANG D,et al. Supervised learning and unsupervised learning for hydrocarbon prediction using multiwave seismic data[J]. Geophysical Prospecting for Petroleum,2018,57(4):601-610.) [28] 林年添, 张栋, 张凯, 等. 地震油气储层的小样本卷积神经网络学习与预测[J]. 地球物理学报,2018,61(10):4110-4125. (LIN N T,ZHANG D,ZHANG K,et al. Predicting distribution of hydrocarbon reservoirs with seismic data based on learning of the small-sample convolution neural network[J]. Chinese Journal of Geophysics,2018,61(10):4110-4125.) [29] 付超, 林年添, 张栋, 等. 多波地震深度学习的油气储层分布预测案例[J]. 地球物理学报,2018,61(1):293-303.(FU C, LIN N T,ZHANG D,et al. Prediction of reservoirs using multicomponent seismic data and the deep learning method[J]. Chinese Journal of Geophysics,2018,61(1):293-303.) [30] 安鹏, 曹丹平, 赵宝银, 等. 基于LSTM循环神经网络的储层物性参数预测方法研究[J]. 地球物理学进展,2019,34(5):1849-1858.(AN P,CAO D P,ZHAO B Y,et al. Reservoir physical parameters prediction based on LSTM recurrent neural network[J]. Progress in Geophysics,2019,34(5):1849-1858.) |