[1] YADAV S,REDDY A K K,REDDY A L N,et al. Detecting algorithmically generated domain-flux attacks with DNS traffic analysis[J]. IEEE/ACM Transactions on Networking,2012,20(5):1663-1677. [2] PLOHMANN D,YAKDAN K,KLATT M,et al. A comprehensive measurement study of domain generating malware[C]//Proceedings of the 25th USENIX Security Symposium. Berkeley:USENIX Association,2016:263-278. [3] SCHÜPPEN S,TEUBERT D,HERRMANN P,et al. FANCI:feature-based automated NXDomain classification and intelligence[C]//Proceedings of the 27th USENIX Security Symposium. Berkeley:USENIX Association,2018:1165-1181. [4] SHI Y,CHEN G,LI J T. Malicious domain name detection based on extreme machine learning[J]. Neural Processing Letters,2018,48(3):1347-1357. [5] HAO S,KANTCHELIAN A,MILLER B,et al. PREDATOR:proactive recognition and elimination of domain abuse at time-ofregistration[C]//Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. New York:ACM,2016:1568-1579. [6] 张永斌, 陆寅, 张艳宁. 基于组行为特征的恶意域名检测[J]. 计算机科学,2013,40(8):146-148,185.(ZHANG Y B,LU Y, ZHANG Y N. Malware domains detection by monitoring group activities[J]. Computer Science,2013,40(8):146-148,185.) [7] WOODBRIDGE J,ANDERSON H S,AHUJA A,et al. Predicting domain generation algorithms with long short-term memory networks[EB/OL]. (2016-11-02)[2020-06-20]. http://arxiv.org/pdf/1611.00791.pdf. [8] BERMAN D S. DGA CapsNet:1D application of capsule networks to DGA detection[J]. Information,2019,10(5):No. 157. [9] DRICHEL A,MEYER U,SCHÜPPEN S,et al. Analyzing the realworld applicability of DGA classifiers[C]//Proceedings of the 15th International Conference on Availability,Reliability and Security. New York:ACM,2020:No. 15. [10] QIAO Y C,ZHANG B,ZHANG W Z,et al. DGA domain name classification method based on long short-term memory with attention mechanism[J]. Applied Sciences, 2019, 9(20):No. 4205. [11] SIVAGURU R,CHOUDHARY C,YU B,et al. An evaluation of DGA classifiers[C]//Proceedings of the 2018 IEEE International Conference on Big Data. Piscataway:IEEE,2018:5058-5067. [12] CHOUDHARY C, SIVAGURU R, PEREIRA M, et al. Algorithmically generated domain detection and malware family classification[C]//Proceedings of the 2018 International Symposium on Security in Computing and Communication,CCIS 969. Singapore:Springer,2019:640-655. [13] YU B,PAN J,HU J M,et al. Character level based detection of DGA domain names[C]//Proceedings of the 2018 International Joint Conference on Neural Networks. Piscataway:IEEE,2018:1-8. [14] 裴兰珍, 赵英俊, 王哲, 等. 采用深度学习的DGA域名检测模型比较[J]. 计算机科学,2019,46(5):111-115.(PEI L Z,ZHAO Y J,WANG Z,et al. Comparison of DGA domain detection models using deep learning[J]. Computer Science,2019,46(5):111-115.) [15] CURTIN R R, GARDNER A B, GRZONKOWSKI S, et al. Detecting DGA domains with recurrent neural networks and side information[C]//Proceedings of the 14th International Conference on Availability, Reliability and Security. New York:ACM, 2019:No. 20. [16] KOH J J,RHODES B. Inline detection of domain generation algorithms with context-sensitive word embeddings[C]//Proceedings of the 2018 IEEE International Conference on Big Data. Piscataway:IEEE,2018:2966-2971. [17] HIGHNAM K,PUZIO D,LUO S,et al. Real-time detection of dictionary DGA network traffic using deep learning[J]. SN Computer Science,2021,2:No. 110. |