[1] 吉建民. 提高ASP效率的若干途径及服务机器人上应用[D]. 合肥:中国科学技术大学,2010:2.(JI J M. Several ways to improve efficiency of answer set programming and its application in service robots[D]. Hefei:University of Science and Technology of China, 2010:2.) [2] 柴伟. 短语结构句法分析综述[J]. 电脑知识与技术,2020,16(16):26-27,30.(CHAI W. A review of the constituency parsing[J]. Computer Knowledge and Technology,2020,16(16):26-27,30.) [3] BAHDANAU D,CHO K,BENGIO Y. Neural machine translation by jointly learning to align and translate[EB/OL]. (2016-05-19)[2020-09-10]. http://www.arxiv.org/pdf/1409.0473.pdf. [4] CHO K,VAN MERRIËNBOER B,GÜLÇEHRE Ç,et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics,2014:1724-1734. [5] ERIGUCHI A, HASHIMOTO K, TSURUOKA Y. Tree-tosequence attentional neural machine translation[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics,2016:823-833. [6] CHEN H D,HUANG S J,CHIANG D,et al. Improved neural machine translation with a syntax-aware encoder and decoder[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics,2017:1936-1945. [7] ZHANG M S,LI Z H,FU G H,et al. Syntax-enhanced neural machine translation with syntax-aware word representations[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. Stroudsburg, PA:Association for Computational Linguistics,2019:1151-1161. [8] REDDY S,LAPATA M,STEEDMAN M. Large-scale semantic parsing without question-answer pairs[J]. Transactions of the Association for Computational Linguistics,2014,2:377-392. [9] REDDY S, TÄCKSTRÖM O, PETROV S, et al. Universal semantic parsing[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics,2017:89-101. [10] REDDY S,TÄCKSTRÖM O,COLLINS M,et al. Transforming dependency structures to logical forms for semantic parsing[J]. Transactions of the Association for Computational Linguistics, 2016,4:127-140. [11] BERANT J,CHOU A,FROSTIG R,et al. Semantic parsing on freebase from question-answer pairs[C]//Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics, 2013:1533-1544. [12] MATUSZEK C,FITZGERALD N,ZETTLEMOYER L,et al. A joint model of language and perception for grounded attribute learning[C]//Proceedings of the 29th International Conference on Machine Learning. Madison,WI:Omnipress,2012:1671-1678. [13] ZETTLEMOYER L S,COLLINS M. Learning to map sentences to logical form:structured classification with probabilistic categorical grammars[C]//Proceedings of the 21st Conference on Uncertainty in Artificial Intelligence. Arlington,VA:AUAI Press,2005:658-666. [14] WANG A,KWIATKOWSKI T,ZETTLEMOYER L. Morphosyntactic lexical generalization for CCG semantic parsing[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg,PA:Association for Computational Linguistics,2014:1284-1295. [15] DONG L,LAPATA M. Language to logical form with neural attention[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics,2016:33-43. [16] MALHOTRA P,VIG L,SHROFF G,et al. Long short term memory networks for anomaly detection in time series[C]//Proceedings of the 23rd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Bruges,Belgium:[s. n.],2015:89-94. [17] ZAREMBA W,SUTSKEVER I,VINYALS O. Recurrent neural network regularization[EB/OL]. (2015-02-19)[2020-09-11]. https://arxiv.org/pdf/1409.2329.pdf. [18] MNIH V,HEESS N,GRAVES A,et al. Recurrent models of visual attention[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge:MIT Press,2014:2204-2212. [19] XU K,WU L F,WANG Z G,et al. Exploiting rich syntactic information for semantic parsing with graph-to-sequence model[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg,PA:Association for Computational Linguistics,2018:918-924. [20] CHEN B,SUN L,HAN X P. Sequence-to-action:end-to-end semantic graph generation for semantic parsing[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics,2018:766-777. [21] SUN Y B,TANG D Y,DUAN N,et al. Semantic parsing with syntax-and table-aware SQL generation[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics,2018:361-372. [22] DONG L, LAPATA M. Coarse-to-fine decoding for neural semantic parsing[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg,PA:Association for Computational Linguistics,2018:731-742. [23] YIN P C,NEUBIG G. TRANX:a transition-based neural abstract syntax parser for semantic parsing and code generation[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing:System Demonstrations. Stroudsburg, PA:Association for Computational Linguistics, 2018:7-12. [24] ZHANG X,HE S Z,LIU K,et al. AdaNSP:uncertainty-driven adaptive decoding in neural semantic parsing[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics,2019:4265-4270. [25] VASWANI A,SHAZEER N,PARMAR N,et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook,NY:Curran Associates Inc.,2017:6000-6010. [26] SUN Z Y,ZHU Q H,XIONG Y F,et al. TreeGen:a tree-based transformer architecture for code generation[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, CA:AAAI Press,2020:8984-8991. [27] DOZAT T,MANNING C D. Simpler but more accurate semantic dependency parsing[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics,2018:484-490. [28] DOZAT T,MANNING C D. Deep biaffine attention for neural dependency parsing[EB/OL]. (2017-03-10)[2020-09-12]. https://arxiv.org/pdf/1611.01734.pdf. [29] WANG Y R,WU L J,XIA Y C,et al. Transductive ensemble learning for neural machine translation[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2020:6291-6298. [30] MANNING C D,SURDEANU M,BAUER J,et al. The Stanford CoreNLP natural language processing toolkit[C]//Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics:System Demonstrations. Stroudsburg, PA:Association for Computational Linguistics,2014:55-60. [31] ZETTLEMOYER L,COLLINS M. Online learning of relaxed CCG grammars for parsing to logical form[C]//Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Stroudsburg, PA:Association for Computational Linguistics, 2007:678-687. [32] KWIATKOWSKI T,ZETTLEMOYER L,GOLDWATER S,et al. Lexical generalization in CCG grammar induction for semantic parsing[C]//Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics,2011:1512-1523. [33] LIANG P,JORDAN M I,KLEIN D. Learning dependency-based compositional semantics[J]. Computational Linguistics,2013,29(2):389-446. [34] KWIATKOWSKI T,CHOI E,ARTZI Y,et al. Scaling semantic parsers with on-the-fly ontology matching[C]//Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics,2013:1545-1556. [35] ZHAO K,HUANG L. Type-driven incremental semantic parsing with polymorphism[C]//Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. Stroudsburg,PA:Association for Computational Linguistics,2015:1416-1421. [36] JIA R,LIANG P. Data recombination for neural semantic parsing[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg,PA:Association for Computational Linguistics,2016:12-22. |