[1] WILD C P, WEIDERPASS E, STEWART B W. World Cancer Report:Cancer Research for Cancer Prevention[M]. Lyon:International Agency for Research on Cancer, 2020:23-33. [2] World Health Organization. WHO position paper on mammography screening[EB/OL].[2020-06-20]. https://apps.who.int/iris/bitstream/handle/10665/137339/9789241507936_eng.pdf?sequence=1&isAllowed=y. [3] 孙利雷, 徐勇. 基于深度学习的乳腺X射线影像分类方法研究[J]. 计算机工程与应用, 2018, 54(21):13-19.(SUN L L, XU Y. Research on classification method of mammography based on deep learning[J]. Computer Engineering and Applications, 2018, 54(21):13-19.) [4] CHEN D R, LIN Y C, HUANG Y L. 3D contouring for breast tumor in sonography[EB/OL]. (2020-09-07)[2020-10-27]. https://arxiv.org/pdf/1901.09407.pdf. [5] TAN P H, ELLIS I, ALLISON K, et al. The 2019 World Health Organization classification of tumours of the breast[J]. Histopathology, 2020, 77(2):181-185. [6] LITJENS G, KOOI T, BEJNORDI B E, et al. A survey on deep learning in medical image analysis[J]. Medical Image Analysis, 2017, 42:60-88. [7] EADIE L H, TAYLOR P, GIBSON A P. A systematic review of computer-assisted diagnosis in diagnostic cancer imaging[J]. European Journal of Radiology, 2012, 81(1):e70-e76. [8] QU A P, CHEN J M, WANG L W, et al. Segmentation of Hematoxylin-Eosin stained breast cancer histopathological images based on pixel-wise SVM classifier[J]. Science China Information Sciences, 2015, 58(9):1-13. [9] ZHANG Y G, ZHANG B L, COENEN F, et al. One-class kernel subspace ensemble for medical image classification[J]. EURASIP Journal on Advances in Signal Processing, 2014, 2014:No. 17. [10] SPANHOL F A, OLIVEIRA L S, PETITJEAN C, et al. A dataset for breast cancer histopathological image classification[J]. IEEE Transactions on Biomedical Engineering, 2016, 63(7):1455-1462. [11] CHAN A, TUSZYNSKI J A. Automatic prediction of tumour malignancy in breast cancer with fractal dimension[J]. Royal Society Open Science, 2016, 3(12):No. 160558. [12] SPANHOL F A, OLIVEIRA L S, PETITJEAN C, et al. Breast cancer histopathological image classification using convolutional neural networks[C]//Proceedings of the 2016 International Joint Conference on Neural Networks. Piscataway:IEEE, 2016:2560-2567. [13] 詹翔, 张婷, 林聪, 等. 基于深度学习的乳腺病理图像分类实验方法[J]. 计算机应用, 2019, 39(S2):118-121.(ZHAN X, ZHANG T, LIN C, et al. Classification method of breast pathological images based on deep learning[J]. Journal of Computer Applications, 2019, 39(S2):118-121.) [14] WEI B Z, HAN Z Y, HE X Y, et al. Deep learning model based breast cancer histopathological image classification[C]//Proceedings of the IEEE 2nd International Conference on Cloud Computing and Big Data Analysis. Piscataway:IEEE, 2017:348-353. [15] JIANG Y, CHEN L, ZHANG H, et al. Breast cancer histopathological image classification using convolutional neural networks with small SE-ResNet module[J]. PLoS ONE, 2019, 14(3):No. e0214587. [16] VAHADANE A, PENG T Y, ALBARQOUNI S, et al. Structurepreserved color normalization for histological images[C]//Proceedings of the IEEE 12th International Symposium on Biomedical Imaging. Piscataway:IEEE, 2015:1012-1015. [17] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6):84-90. [18] CIREŞAN D C, GIUSTI A, GAMBARDELLA L M, et al. Mitosis detection in breast cancer histology images with deep neural networks[C]//Proceedings of the 2013 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 8150. Berlin:Springer, 2013:411-418. [19] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:2261-2269. [20] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:7132-7141. [21] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:770-778. [22] 明涛, 王丹, 郭继昌, 等. 基于多尺度通道重校准的乳腺癌病理图像分类[J]. 浙江大学学报(工学版), 2020, 54(7):1289-1297. (MING T, WANG D, GUO J C, et al. Breast cancer histopathological image classification using multi-scale channel squeeze-and-excitation model[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(7):1289-1297.) [23] HAN Z Y, WEI B Z, ZHENG Y J, et al. Breast cancer multiclassification from histopathological images with structured deep learning model[J]. Scientific Reports, 2017, 7(1):No. 4172. [24] BARDOU D, ZHANG K, AHMAD S M. Classification of breast cancer based on histology images using convolutional neural networks[J]. IEEE Access, 2018, 6:24680-24693. |