[1] LAVALLE S M. Rapidly-exploring random trees:a new tool for path planning:TR98-11[R]. Ames, IA:Iowa State University, 1998. [2] WU X J, XU L, ZHEN R, et al. Biased sampling potentially guided intelligent bidirectional RRT* algorithm for UAV path planning in 3D environment[J]. Mathematical Problems in Engineering, 2019, 2019:No. 5157403. [3] PÉREZ-HIGUERAS N, JARDÓN A, RODRÍGUEZ Á, et al. 3D exploration and navigation with optimal-RRT planners for ground robots in indoor incidents[J]. Sensors, 2020, 20(1):No. 220. [4] KUFFNER J J, LaVALLE S M. RRT-Connect:an efficient approach to single-query path planning[C]//Proceedings of the 2000 IEEE International Conference on Robotics and Automation. Piscataway:IEEE, 2000:995-1001. [5] ESPOSITO J M, KIM J, KUMAR V. Adaptive RRTs for validating hybrid robotic control systems[M]//ERDMANN M, HSU D, OVERMARS M, et al. Algorithmic Foundations of Robotics Ⅵ, STAR 17. Berlin:Springer, 2005:107-121. [6] KARAMAN S, WALTER M R, PEREZ A, et al. Anytime motion planning using the RRT*[C]//Proceedings of the 2011 IEEE International Conference on Robotics and Automation. Piscataway:IEEE, 2011:1478-1483. [7] 刘建宇, 范平清. 基于改进的RRT*-Connect算法机械臂路径规划[J]. 计算机工程与应用, 2021, 57(6):274-278.(LIU J Y, FAN P Q. Path planning of manipulator based on improved RRT*-Connect algorithm[J]. Computer Engineering and Applications, 2021, 57(6):274-278.) [8] CHEN R, TAN B W, LIU Y K, et al. Modified RRT*-Connect guided by APF-based multiple weight reattribution[J]. World Scientific Research Journal, 2020, 6(11):285-297. [9] KLEMM S, OBERLÄNDER J, HERMANN A, et al. RRT*-Connect:faster asymptotically optimal motion planning[C]//Proceedings of the 2015 IEEE International Conference on Robotics and Biomimetics. Piscataway:IEEE, 2015:1670-1677. [10] QURESHI A H, AYAZ Y. Potential functions based sampling heuristic for optimal path planning[J]. Autonomous Robots, 2016, 40(6):1079-1093. [11] 刘恩海, 高文斌, 孔瑞平, 等. 改进的RRT路径规划算法[J]. 计算机工程与设计, 2019, 40(8):2253-2258.(LIU E H, GAO W B, KONG R P, et al. Improved RRT path planning algorithm[J]. Computer Engineering and Design, 2019, 40(8):2253-2258.) [12] 张顺, 谢习华, 陈定平. 基于改进RRT-Connect的无人机航迹规划算法[J]. 传感器与微系统, 2020, 39(12):146-148, 156. (ZHANG S, XIE X H, CHEN D P. UAV path planning algorithm based on improved RRT-Connect[J]. Transducer and Microsystem Technologies, 2020, 39(12):146-148, 156.) [13] 裴以建, 杨超杰, 杨亮亮. 基于改进RRT*的移动机器人路径规划算法[J]. 计算机工程, 2019, 45(5):285-290, 297.(PEI Y J, YANG C J, YANG L L. Path planning algorithm for mobile robot based on improved RRT*[J]. Computer Engineering, 2019, 45(5):285-290, 297.) [14] GAMMELL J D, SRINIVASA S S, BARFOOT T D. Informed RRT*:optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic[C]//Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE, 2014:2997-3004. [15] MASHAYEKHI R, IDRIS M Y I, ANISI M H, et al. Informed RRT*-Connect:an asymptotically optimal single-query path planning method[J]. IEEE Access, 2020, 8:19842-19852. [16] 朱颖, 李元鹏, 张亚婉, 等. 基于改进人工势场法的搬运机器人路径规划[J]. 电子测量技术, 2020, 43(17):101-104.(ZHU Y, LI Y P, ZHANG Y W, et al. Handling robot path planning based on improved artificial potential field method[J]. Electronic Measurement Technology, 2020, 43(17):101-104.) [17] 徐小强, 王明勇, 冒燕. 基于改进人工势场法的移动机器人路径规划[J]. 计算机应用, 2020, 40(12):3508-3512.(XU X Q, WANG M Y, MAO Y. Path planning of mobile robot based on improved artificial potential field method[J]. Journal of Computer Applications, 2020, 40(12):3508-3512.) [18] SHIRLEY P, CHIU K. A low distortion map between disk and square[J]. Journal of Graphics Tools, 1997, 2(3):45-52. |