Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (2): 584-591.DOI: 10.11772/j.issn.1001-9081.2021020219
• Multimedia computing and computer simulation • Previous Articles Next Articles
Junbo LI1,2,3, Pinle QIN1,2,3, Jianchao ZENG1,2,3(), Meng LI1,2,3
Received:
2021-02-04
Revised:
2021-05-11
Accepted:
2021-05-13
Online:
2022-02-11
Published:
2022-02-10
Contact:
Jianchao ZENG
About author:
LI Junbo, born in 1996, M. S. candidate. His research interests include machine learning, computer vision, medical image analysis.Supported by:
李俊伯1,2,3, 秦品乐1,2,3, 曾建潮1,2,3(), 李萌1,2,3
通讯作者:
曾建潮
作者简介:
李俊伯(1996—),男,山西运城人,硕士研究生,主要研究方向:机器学习、计算机视觉、医学影像分析;基金资助:
CLC Number:
Junbo LI, Pinle QIN, Jianchao ZENG, Meng LI. CT three-dimensional reconstruction algorithm based on super-resolution network[J]. Journal of Computer Applications, 2022, 42(2): 584-591.
李俊伯, 秦品乐, 曾建潮, 李萌. 基于超分辨率网络的CT三维重建算法[J]. 《计算机应用》唯一官方网站, 2022, 42(2): 584-591.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021020219
卷积核量 | 补丁尺寸 | SSIM | PSNR/dB | 耗时/s |
---|---|---|---|---|
32 | 28×28 | 0.908 1 | 34.238 | 0.04 |
64 | 14×14 | 0.920 2 | 34.602 | 0.06 |
28×28 | 0.928 3 | 35.962 | ||
36×36 | 0.910 6 | 34.330 | ||
128 | 28×28 | 0.928 8 | 35.969 | 0.12 |
128 | 28×28 | 0.928 8 | 35.969 | 0.12 |
Tab. 1 Training results corresponding to selection of each parameter of the proposed model (scaling factor of 2)
卷积核量 | 补丁尺寸 | SSIM | PSNR/dB | 耗时/s |
---|---|---|---|---|
32 | 28×28 | 0.908 1 | 34.238 | 0.04 |
64 | 14×14 | 0.920 2 | 34.602 | 0.06 |
28×28 | 0.928 3 | 35.962 | ||
36×36 | 0.910 6 | 34.330 | ||
128 | 28×28 | 0.928 8 | 35.969 | 0.12 |
128 | 28×28 | 0.928 8 | 35.969 | 0.12 |
算法 | 参数量 | PSNR/dB | SSIM | ||||
---|---|---|---|---|---|---|---|
×2 | ×3 | ×4 | ×2 | ×3 | ×4 | ||
Bicubic | — | 28.337 | 25.433 | 23.181 | 0.842 1 | 0.807 4 | 0.766 9 |
Antialias | — | 28.590 | 25.540 | 23.514 | 0.861 0 | 0.829 7 | 0.791 1 |
EDSR+VMeta | 4.32×107 | 33.549 | 30.372 | 27.871 | 0.929 8 | 0.877 6 | 0.842 0 |
RDN+VMeta | 2.24×107 | 34.728 | 31.547 | 28.904 | 0.921 2 | 0.878 2 | 0.842 5 |
RCAN+VMeta | 1.61×107 | 35.146 | 31.685 | 29.330 | 0.924 6 | 0.880 1 | 0.843 7 |
DLRNet | 3.43×107 | 35.962 | 32.463 | 30.103 | 0.928 3 | 0.881 9 | 0.844 5 |
Tab. 2 PSNR and SSIM of each algorithm on test set (scaling factor of 2, 3, 4)
算法 | 参数量 | PSNR/dB | SSIM | ||||
---|---|---|---|---|---|---|---|
×2 | ×3 | ×4 | ×2 | ×3 | ×4 | ||
Bicubic | — | 28.337 | 25.433 | 23.181 | 0.842 1 | 0.807 4 | 0.766 9 |
Antialias | — | 28.590 | 25.540 | 23.514 | 0.861 0 | 0.829 7 | 0.791 1 |
EDSR+VMeta | 4.32×107 | 33.549 | 30.372 | 27.871 | 0.929 8 | 0.877 6 | 0.842 0 |
RDN+VMeta | 2.24×107 | 34.728 | 31.547 | 28.904 | 0.921 2 | 0.878 2 | 0.842 5 |
RCAN+VMeta | 1.61×107 | 35.146 | 31.685 | 29.330 | 0.924 6 | 0.880 1 | 0.843 7 |
DLRNet | 3.43×107 | 35.962 | 32.463 | 30.103 | 0.928 3 | 0.881 9 | 0.844 5 |
算法 | 参数量 | PSNR/dB | SSIM | ||||
---|---|---|---|---|---|---|---|
×2 | ×3 | ×4 | ×2 | ×3 | ×4 | ||
RDN+VM-Meta | 2.24×107 | 34.728 | 31.547 | 29.904 | 0.921 2 | 0.878 2 | 0.842 5 |
MASPP+VM-Meta | 2.37×107 | 35.181 | 31.890 | 30.243 | 0.925 3 | 0.880 0 | 0.843 8 |
CA+MASPP+VM-Meta | 2.92×107 | 35.529 | 32.211 | 30.528 | 0.926 1 | 0.880 5 | 0.844 0 |
CA+MASPP+VM-Meta | 3.04×107 | 35.643 | 32.305 | 30.590 | 0.926 6 | 0.880 8 | 0.844 0 |
CA+MASPP+VM-Meta+CRM | 3.43×107 | 35.962 | 32.563 | 30.779 | 0.928 3 | 0.881 9 | 0.844 5 |
Tab. 3 Ablation experimental on result test set
算法 | 参数量 | PSNR/dB | SSIM | ||||
---|---|---|---|---|---|---|---|
×2 | ×3 | ×4 | ×2 | ×3 | ×4 | ||
RDN+VM-Meta | 2.24×107 | 34.728 | 31.547 | 29.904 | 0.921 2 | 0.878 2 | 0.842 5 |
MASPP+VM-Meta | 2.37×107 | 35.181 | 31.890 | 30.243 | 0.925 3 | 0.880 0 | 0.843 8 |
CA+MASPP+VM-Meta | 2.92×107 | 35.529 | 32.211 | 30.528 | 0.926 1 | 0.880 5 | 0.844 0 |
CA+MASPP+VM-Meta | 3.04×107 | 35.643 | 32.305 | 30.590 | 0.926 6 | 0.880 8 | 0.844 0 |
CA+MASPP+VM-Meta+CRM | 3.43×107 | 35.962 | 32.563 | 30.779 | 0.928 3 | 0.881 9 | 0.844 5 |
1 | KHAN U, YASIN A, ABID M, et al. A methodological review of 3D reconstruction techniques in tomographic imaging[J]. Journal of Medical Systems, 2018, 42(10): No.190. 10.1007/s10916-018-1042-2 |
2 | LV S Q, CHEN Y M, LI Z Y, et al. Application of time-frequency domain transform to three-dimensional interpolation of medical images[J]. Journal of Computational Biology, 2017, 24(11): 1112-1124. 10.1089/cmb.2017.0038 |
3 | AFSHAR P, SHAHROUDNEJAD A, MOHAMMADI A, et al. CARISI: convolutional autoencoder-based inter-slice interpolation of brain tumor volumetric images [C]// Proceedings of the 25th IEEE International Conference on Image Processing. Piscataway: IEEE, 2018: 1458-1462. 10.1109/icip.2018.8451759 |
4 | CHAO Z, KIM H J. Slice interpolation of medical images using enhanced fuzzy radial basis function neural networks[J]. Computers in Biology and Medicine, 2019, 110: 66-78. 10.1016/j.compbiomed.2019.05.013 |
5 | 郭钧锋,蔡元龙,王玉平.医学图像三维重建的插值方法研究[J]. CT理论与应用研究, 1994, 3(4): 7-11. |
GUO J F, CAI Y L, WANG Y P. Investigation of interpolation methods for medical 3D reconstruction[J]. CT Theory and Applications, 1994, 3(4): 7-11. | |
6 | 徐艳蕾,赵继印,李敏,等.基于顺序形态学的医学图像插值算法的研究[J].电子学报, 2010, 38(5): 1002-1007. 10.1007/978-3-642-13199-8_2 |
XU Y L, ZHAO J Y, LI M, et al. The interpolation arithmetic study of medical image based on the order morphology[J]. Acta Electronica Sinica, 2010, 38(5): 1002-1007. 10.1007/978-3-642-13199-8_2 | |
7 | LIU S Q, XU D G, ZHOU S K, et al. 3D anisotropic hybrid network: transferring convolutional features from 2D images to 3D anisotropic volumes [C]// Proceedings of the 2018 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS11071. Cham: Springer, 2018: 851-858. |
8 | 朱付平,田捷,林瑶,等.基于Level Set方法的医学图像分割[J].软件学报, 2002, 13(9): 1866-1872. 10.3969/j.issn.1007-0249.2003.06.017 |
ZHU F P, TIAN J, LIN Y, et al. Medical image segmentation based on Level Set method[J]. Journal of Software, 2002, 13(9): 1866-1872. 10.3969/j.issn.1007-0249.2003.06.017 | |
9 | GREVERA G J, UDUPA J K. Shape-based interpolation of multidimensional grey-level images[J]. IEEE Transactions on Medical Imaging, 1996, 15(6): 881-892. 10.1109/42.544506 |
10 | PENG C, LIN W A, LIAO H F, et al. Deep slice interpolation via marginal super-resolution, fusion and refinement[EB/OL]. (2019-08-15) [2020-12-22]. . 10.1109/cvpr42600.2020.00777 |
11 | DONG C, LOY C C, HE K M, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295-307. 10.1109/tpami.2015.2439281 |
12 | YANG J C, WRIGHT J, HUANG T S, et al. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing, 2010, 19(11): 2861-2873. 10.1109/tip.2010.2050625 |
13 | WANG Z H, CHEN J, HOI S C H. Deep learning for image super-resolution: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10): 3365-3387. 10.1109/tpami.2020.2982166 |
14 | SHI W Z, CABALLERO J, HUSZÁR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1874-1883. 10.1109/cvpr.2016.207 |
15 | LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2017: 1132-1140. 10.1109/cvprw.2017.151 |
16 | LEDIG C, THEIS L, HUSZÁR F, et al. Photo-realistic single image super-resolution using a generative adversarial network [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 105-114. 10.1109/cvpr.2017.19 |
17 | 高媛,刘志,秦品乐,等.基于深度残差生成对抗网络的医学影像超分辨率算法[J].计算机应用, 2018, 38(9): 2689-2695. 10.11772/j.issn.1001-9081.2018030574 |
GAO Y, LIU Z, QIN P L, et al.Medical image super-resolution algorithm based on deep residual generation adversarial network[J]. Journal of Computer Applications, 2018, 38(9): 2689-2695. 10.11772/j.issn.1001-9081.2018030574 | |
18 | ZHANG Y L, TIAN Y P, KONG Y, et al. Residual dense network for image super-resolution [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 2472-2481. 10.1109/cvpr.2018.00262 |
19 | ZHANG Y L, LI K P, LI K, et al. Image super-resolution using very deep residual channel attention networks [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS11211. Cham: Springer, 2018: 294-310. 10.1007/978-3-030-01234-2_18 |
20 | HU X C, MU H Y, ZHANG X Y, et al. Meta-SR: a magnification-arbitrary network for super-resolution [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 1575-1584. 10.1109/cvpr.2019.00167 |
21 | LIU J, ZHANG W J, TANG Y T, et al. Residual feature aggregation network for image super-resolution [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 2356-2365. 10.1109/cvpr42600.2020.00243 |
22 | HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141. 10.1109/cvpr.2018.00745 |
23 | KEYS R. Cubic convolution interpolation for digital image processing[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981, 29(6): 1153-1160. 10.1109/tassp.1981.1163711 |
[1] | Yunchuan HUANG, Yongquan JIANG, Juntao HUANG, Yan YANG. Molecular toxicity prediction based on meta graph isomorphism network [J]. Journal of Computer Applications, 2024, 44(9): 2964-2969. |
[2] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
[3] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
[4] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[5] | Xiyuan WANG, Zhancheng ZHANG, Shaokang XU, Baocheng ZHANG, Xiaoqing LUO, Fuyuan HU. Unsupervised cross-domain transfer network for 3D/2D registration in surgical navigation [J]. Journal of Computer Applications, 2024, 44(9): 2911-2918. |
[6] | Yuhan LIU, Genlin JI, Hongping ZHANG. Video pedestrian anomaly detection method based on skeleton graph and mixed attention [J]. Journal of Computer Applications, 2024, 44(8): 2551-2557. |
[7] | Yanjie GU, Yingjun ZHANG, Xiaoqian LIU, Wei ZHOU, Wei SUN. Traffic flow forecasting via spatial-temporal multi-graph fusion [J]. Journal of Computer Applications, 2024, 44(8): 2618-2625. |
[8] | Qianhong SHI, Yan YANG, Yongquan JIANG, Xiaocao OUYANG, Wubo FAN, Qiang CHEN, Tao JIANG, Yuan LI. Multi-granularity abrupt change fitting network for air quality prediction [J]. Journal of Computer Applications, 2024, 44(8): 2643-2650. |
[9] | Zheng WU, Zhiyou CHENG, Zhentian WANG, Chuanjian WANG, Sheng WANG, Hui XU. Deep learning-based classification of head movement amplitude during patient anaesthesia resuscitation [J]. Journal of Computer Applications, 2024, 44(7): 2258-2263. |
[10] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[11] | Zhi ZHANG, Xin LI, Naifu YE, Kaixi HU. DKP: defending against model stealing attacks based on dark knowledge protection [J]. Journal of Computer Applications, 2024, 44(7): 2080-2086. |
[12] | Yiqun ZHAO, Zhiyu ZHANG, Xue DONG. Anisotropic travel time computation method based on dense residual connection physical information neural networks [J]. Journal of Computer Applications, 2024, 44(7): 2310-2318. |
[13] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[14] | Xun SUN, Ruifeng FENG, Yanru CHEN. Monocular 3D object detection method integrating depth and instance segmentation [J]. Journal of Computer Applications, 2024, 44(7): 2208-2215. |
[15] | Xiaolu WANG, Wangfei QIAN. Gait recognition method based on two-branch convolutional network [J]. Journal of Computer Applications, 2024, 44(6): 1965-1971. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||