[1] 张卫华, 王伯铭. 中国高速列车的创新发展[J]. 机车电传动, 2010(1):8-12,69.(ZHANG W H,WANG B M. Innovation and development of high-speed railway in China[J]. Electric Drive for Locomotives,2010(1):8-12,69.) [2] YELLA S,NYBERG R G,PAYVAR B,et al. Machine vision approach for automating vegetation detection on railway tracks[J]. Journal of Intelligent Systems,2013,22(2):179-196. [3] 刘丽瑶, 陈强, 李艳娜, 等. 应用二阶Harris算子的高铁轨道近景影像特征点提取[J]. 测绘科学,2015, 40(5):84-88.(LIU L Y, CHEN Q,LI Y N,et al. Feature points extraction from high speed railway track images based on second derivative Harris operator[J]. Science of Surveying and Mapping,2015,40(5):84-88.) [4] 李睿, 武晓春. 基于数字图像处理的直线型铁轨的自动识别[J]. 电视技术,2014,38(3):167-169. (LI R,WU X C. Automatic identify of linear tracks based on digital image processing[J]. Video Engineering,2014,38(3):167-169.) [5] 居耀勇, 陈黎. 基于主方向迭代校正的铁轨检测算法[J]. 武汉科技大学学报,2012,35(6):473-477.(JU Y Y,CHEN L. An iterative principal orientation adjustment-based algorithm for railway track detection[J]. Journal of Wuhan University of Science and Technology,2012,35(6):473-477.) [6] 郭栋鸿. 基于机器视觉的铁路轨道异物入侵检测算法研究[D]. 兰州:兰州交通大学,2020:11-17.(GUO D H. Research on algorithm of intrusion detection for railway orbital foreign object based on machine vision[D]. Lanzhou:Lanzhou Jiaotong University,2020:11-17.) [7] 超木日力格. 机车司机视野扩展系统及路轨障碍物检测的研究[D]. 北京:北京交通大学,2012:33-45.(CHAOMURILIGE. Locomotive driver' s vision expansion system and roadblock detection algorithm[D]. Beijing:Beijing Jiaotong University, 2012:33-45.) [8] 王前选, 梁习锋, 刘应龙, 等. 铁路钢轨视觉识别检测方法[J]. 中南大学学报(自然科学版),2014,45(7):2496-2502.(WANG Q X,LIANG X F,LIU Y L,et al. Railway rail identification detection method using machine vision[J]. Journal of Central South University(Science and Technology),2014,45(7):2496-2502.) [9] 郭碧, 董昱. 基于分段曲线模型的铁路轨道检测算法[J]. 铁道科学与工程学报,2017,14(2):355-363.(GUO B,DONG Y. Railway track detection algorithm based on piecewise curve model[J]. Journal of Railway Science and Engineering,2017,14(2):355-363.) [10] 武历颖, 余强. 一种快速准确非结构化道路检测方法研究[J]. 计算机仿真,2016,33(9):174-178.(WU L Y,YU Q. A fast and accurate detection method of unstructured road[J]. Computer Simulation,2016,33(9):174-178.) [11] KONG H,AUDIBERT J Y,PONCE J. General road detection from a single image[J]. IEEE Transactions on Image Processing, 2010,19(8):2211-2220. [12] JUNG C R,KELBER C R. Lane following and lane departure using a linear-parabolic model[J]. Image and Vision Computing, 2005,23(13):1192-1202. [13] WANG Y,BAI L,FAIRHURST M. Robust road modeling and tracking using condensation[J]. IEEE Transactions on Intelligent Transportation Systems,2008,9(4):570-579. [14] TAN H C,ZHOU Y,ZHU Y,et al. A novel curve lane detection based on improved river flow and RANSA[C]//Proceedings of the 17th International IEEE Conference on Intelligent Transportation Systems. Piscataway:IEEE,2014:133-138. [15] TAPIA-ESPINOZA R,TORRES-TORRITI M. A comparison of gradient versus color and texture analysis for lane detection and tracking[C]//Proceedings of the 6th Latin American Robotics Symposium. Piscataway:IEEE,2009:1-6. [16] SAWANO H,OKADA M. A road extraction method by an active contour model with inertia and differential features[J]. IEICE Transactions on Information and Systems,2006,E89-D(7):2257-2267. [17] NIETO M, SALGADO L, JAUREGUIZAR F, et al. Robust multiple lane road modeling based on perspective analysis[C]//Proceedings of the 15th IEEE International Conference on Image Processing. Piscataway:IEEE,2008:2396-2399. [18] CRISMAN J D,THORPE C E. SCARF:a color vision system that tracks roads and intersections[J]. IEEE Transactions on Robotics and Automation,1993,9(1):49-58. [19] 雷涛, 樊养余, 王小鹏, 等. 基于形态学结构元素建模的车道线检测算法[J]. 计算机应用,2009,29(2):440-443.(LEI T, FAN Y Y,WANG X P,et al. Lane detection algorithm based on morphological structure-elements model[J]. Journal of Computer Applications,2009,29(2):440-443.) [20] PAN X G,SHI J P,LUO P,et al. Spatial as deep:spatial CNN for traffic scene understanding[EB/OL]. (2017-12-07)[2021-01-14]. https://arxiv.org/pdf/1712.06080.pdf. [21] NEVEN D,DE BRABANDERE B,GEORGOULIS S,et al. Towards end-to-end lane detection:an instance segmentation approach[C]//Proceedings of 2018 IEEE Intelligent Vehicles Symposium. Piscataway:IEEE,2018:286-291. [22] GHAFOORIAN M,NUGTEREN C,BAKA N,et al. EL-GAN:embedding loss driven generative adversarial networks for lane detection[C]//Proceedings of the 2018 European Conference on Computer Vision, LNCS 11129. Cham:Springer, 2019:256-272. [23] LI X,LI J,HU X L,et al. Line-CNN:end-to-end traffic line detection with line proposal unit[J]. IEEE Transactions on Intelligent Transportation Systems,2020,21(1):248-258. [24] TABELINI L,BERRIEL R,PAIXÃO T M,et al. PolyLaneNet:lane estimation via deep polynomial regression[EB/OL]. (2020-07-14)[2021-01-14]. https://arxiv.org/pdf/2004.10924.pdf. [25] WANG Z,REN W Q,QIU Q. LaneNet:real-time lane detection networks for autonomous driving[EB/OL]. (2018-07-04)[2021-01-16]. https://arxiv.org/pdf/1807.01726.pdf. [26] LIANG D,GUO Y C,ZHANG S K,et al. LineNet:a zoomable CNN for crowdsourced high definition maps modeling in urban environments[EB/OL]. (2018-07-16)[2021-01-16]. https://arxiv.org/pdf/1807.05696.pdf. [27] XIONG Y W,LIAO R J,ZHAO H S,et al. UPSNet:a unified panoptic segmentation network[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2019:8810-8818. [28] GARNETT N,COHEN R,PE'ER T,et al. 3D-LaneNet:end to end 3D multiple lane detection[C]//Proceedings of the 2019 International Conference on Computer Vision. Piscataway:IEEE, 2019:2921-2930. |