Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (2): 622-630.DOI: 10.11772/j.issn.1001-9081.2021040618
• Frontier and comprehensive applications • Previous Articles Next Articles
Jianrong CAO1,2, Yaqin ZHU1(), Yuting ZHANG1, Junjie LYU1, Hongjuan YANG1,2
Received:
2021-04-20
Revised:
2021-07-16
Accepted:
2021-07-23
Online:
2022-02-11
Published:
2022-02-10
Contact:
Yaqin ZHU
About author:
CAO Jianrong, born in 1965, Ph. D., professor. His research interests include pattern recognition intelligent information processing, video analysis, deep learning, data mining.Supported by:
曹建荣1,2, 朱亚琴1(), 张玉婷1, 吕俊杰1, 杨红娟1,2
通讯作者:
朱亚琴
作者简介:
曹建荣(1965—),男,山东济南人,教授,博士,主要研究方向:模式识别与智能信息处理、视频分析、深度学习、数据挖掘;基金资助:
CLC Number:
Jianrong CAO, Yaqin ZHU, Yuting ZHANG, Junjie LYU, Hongjuan YANG. Fall detection algorithm based on joint point features[J]. Journal of Computer Applications, 2022, 42(2): 622-630.
曹建荣, 朱亚琴, 张玉婷, 吕俊杰, 杨红娟. 基于关节点特征的跌倒检测算法[J]. 《计算机应用》唯一官方网站, 2022, 42(2): 622-630.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021040618
状态 变化 | 视频 序号 | 检测跌倒帧数 | 实际跌倒帧数 | 精确率/% | 召回率/% | 准确率/% |
---|---|---|---|---|---|---|
行走— 跌倒 | 01 | 44 | 42 | 95.45 | 100.00 | 98.93 |
05 | 30 | 28 | 93.30 | 100.00 | 98.84 | |
09 | 38 | 36 | 94.70 | 100.00 | 99.23 | |
坐着— 跌倒 | 10 | 60 | 57 | 95.00 | 100.00 | 96.75 |
20 | 60 | 57 | 95.00 | 100.00 | 97.25 | |
26 | 29 | 30 | 100.00 | 96.67 | 98.46 | |
站立— 跌倒 | 07 | 53 | 44 | 83.02 | 100.00 | 95.05 |
15 | 18 | 19 | 100.00 | 94.73 | 98.48 | |
17 | 8 | 9 | 100.00 | 88.89 | 98.98 | |
平均 | 98.00 |
Tab. 1 Experimental results of fall detection algorithm under different state changes
状态 变化 | 视频 序号 | 检测跌倒帧数 | 实际跌倒帧数 | 精确率/% | 召回率/% | 准确率/% |
---|---|---|---|---|---|---|
行走— 跌倒 | 01 | 44 | 42 | 95.45 | 100.00 | 98.93 |
05 | 30 | 28 | 93.30 | 100.00 | 98.84 | |
09 | 38 | 36 | 94.70 | 100.00 | 99.23 | |
坐着— 跌倒 | 10 | 60 | 57 | 95.00 | 100.00 | 96.75 |
20 | 60 | 57 | 95.00 | 100.00 | 97.25 | |
26 | 29 | 30 | 100.00 | 96.67 | 98.46 | |
站立— 跌倒 | 07 | 53 | 44 | 83.02 | 100.00 | 95.05 |
15 | 18 | 19 | 100.00 | 94.73 | 98.48 | |
17 | 8 | 9 | 100.00 | 88.89 | 98.98 | |
平均 | 98.00 |
类跌倒行为 | 视频序号 | 检测非跌倒帧数 | 误检跌倒帧数 | 准确率/% |
---|---|---|---|---|
下蹲 | 03 | 182 | 1 | 99.45 |
12 | 314 | 1 | 99.68 | |
弯腰 | 06 | 200 | 9 | 95.69 |
16 | 227 | 1 | 99.56 | |
坐下 | 09 | 149 | 6 | 96.12 |
18 | 227 | 1 | 99.56 | |
躺下 | 31 | 121 | 4 | 96.80 |
21 | 182 | 2 | 98.91 | |
平均 | 98.22 |
Tab. 2 Experimental results of fall detection algorithm judging falling-like behaviors
类跌倒行为 | 视频序号 | 检测非跌倒帧数 | 误检跌倒帧数 | 准确率/% |
---|---|---|---|---|
下蹲 | 03 | 182 | 1 | 99.45 |
12 | 314 | 1 | 99.68 | |
弯腰 | 06 | 200 | 9 | 95.69 |
16 | 227 | 1 | 99.56 | |
坐下 | 09 | 149 | 6 | 96.12 |
18 | 227 | 1 | 99.56 | |
躺下 | 31 | 121 | 4 | 96.80 |
21 | 182 | 2 | 98.91 | |
平均 | 98.22 |
算法 | 检测速度 |
---|---|
CenterNet关节点检测 | 15.7 |
DSC-CenterNet关节点检测 | 19.1 |
CenterNet关节点检测+跌倒检测 | 15.2 |
DSC-CenterNet关节点检测+跌倒检测 | 18.6 |
Tab. 3 Comparison of joint point detection and fall detection speeds before and after CenterNet improvement
算法 | 检测速度 |
---|---|
CenterNet关节点检测 | 15.7 |
DSC-CenterNet关节点检测 | 19.1 |
CenterNet关节点检测+跌倒检测 | 15.2 |
DSC-CenterNet关节点检测+跌倒检测 | 18.6 |
算法 | 准确率 | 算法 | 准确率 |
---|---|---|---|
文献[ | 90.74 | 文献[ | 97.30 |
文献[ | 95.45 | 本文算法 | 98.00 |
文献[ | 94.70 |
Tab. 4 Comparison of fall detection accuracy of different algorithms on UR Fall Detection dataset
算法 | 准确率 | 算法 | 准确率 |
---|---|---|---|
文献[ | 90.74 | 文献[ | 97.30 |
文献[ | 95.45 | 本文算法 | 98.00 |
文献[ | 94.70 |
1 | GUTIÉRREZ J, RODRÍGUEZ V, MARTIN S. Comprehensive review of vision-based fall detection systems[J]. Sensors, 2021, 21(3): No.947. 10.3390/s21030947 |
2 | 郝莲,李胜,向芳,等. 2003-2018年中国跌倒死亡率的时间趋势分析[J].现代预防医学, 2020, 47(23): 4357-4360. |
HAO L, LI S, XIANG F, et al. Time trend of falls mortality in China, 2003-2018[J]. Modern Preventive Medicine, 2020, 47(23): 4357-4360. | |
3 | ZHUANG X D, HUANG J, POTAMIANOS G, et al. Acoustic fall detection using Gaussian mixture models and GMM supervectors [C]// Proceedings of the 2009 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2009: 69-72. 10.1109/icassp.2009.4959522 |
4 | IRTAZA A, ADNAN S M, AZIZ S, et al. A framework for fall detection of elderly people by analyzing environmental sounds through acoustic local ternary patterns [C]// Proceedings of the 2017 IEEE International Conference on Systems, Man, and Cybernetics. Piscataway: IEEE, 2017: 1558-1563. 10.1109/smc.2017.8122836 |
5 | PANNURAT N, THIEMIARUS S, NANTAJEEWARAWAT E. A hybrid temporal reasoning framework for fall monitoring[J]. IEEE Sensors Journal, 2017, 17(6): 1749-1759. 10.1109/jsen.2017.2649542 |
6 | SABATINI A M, LIGORIO G, MANNINI A. Prior-to- and post-impact fall detection using inertial and barometric altimeter measurements[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016, 24(7): 774-783. 10.1109/tnsre.2015.2460373 |
7 | WANG F T, CHAN H L, HSU M H, et al. Threshold-based fall detection using a hybrid of tri-axial accelerometer and gyroscope[J]. Physiological Measurement, 2018, 39(10): No.105002. 10.1088/1361-6579/aae0eb |
8 | HUA M J, NAN Y B, LIAN S G. Falls prediction based on body keypoints and Seq2Seq architecture [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop. Piscataway: IEEE, 2019: 1251-1259. 10.1109/iccvw.2019.00158 |
9 | LIU J X, XIA Y Y, TANG Z. Privacy-preserving video fall detection using visual shielding information[J]. The Visual Computer, 2021, 37(2): 359-370. 10.1007/s00371-020-01804-w |
10 | FAN Y X, LEVINE M D, WEN G J, et al. A deep neural network for real-time detection of falling humans naturally occurring scenes[J]. Neurocomputing, 2017, 260: 43-58. 10.1016/j.neucom.2017.02.082 |
11 | ZULJ S, SEKETA G, LACKOVIC I, et al. Accuracy comparison of ML-based fall detection algorithms using two different acceleration derived feature vectors[M]// LHOTSKA L, SUKUPOVA L, LACKOVIĆ I, et al. Proceeding of the 2018 World Congress on Medical Physics and Biomedical Engineering, IFMBE 68/2.Singapore: Springer, 2019: 481-485. 10.1007/978-981-10-9038-7_89 |
12 | 申代友,库洪安,皮红英,等.基于深度相机的老年跌倒监护系统[J].中国医学物理学杂志, 2019, 36(2): 223-228. 10.3969/j.issn.1005-202X.2019.02.019 |
SHEN D Y, KU H A, PI H Y, et al. Depth camera-based fall detection system for the elderly[J]. Chinese Journal of Medical Physics, 2019, 36(2): 223-228. 10.3969/j.issn.1005-202X.2019.02.019 | |
13 | 朱靖.基于卷积神经网络的二维人体姿态估计研究[D].杭州:杭州电子科技大学, 2019: 36-42. 10.20937/rica.2019.35.esp01.06 |
ZHU J. Human pose estimation based on convolutional neural network[D]. Hangzhou: Hangzhou Dianzi University, 2019: 36-42. 10.20937/rica.2019.35.esp01.06 | |
14 | 李文阳.基于Kinect v2的跌倒行为检测与分析[D].银川: :北方民族大学, 2019: 13-44. (LI W Y. Detection and analysis on fall behavior based on Kinect sensor v2[D]. Yinchuan: : North Minzu University, 2019: 13-44.). 10.16652/j.issn.1004-373x.2019.06.034 |
15 | LIN C B, DONG Z Q, KUAN W K, et al. A framework for fall detection based on OpenPose skeleton and LSTM/GRU models[J]. Applied Sciences, 2021, 11(1): No.329. 10.3390/app11010329 |
16 | 蔡文郁,郑雪晨,郭嘉豪,等.基于SVM-MultiCNN模型的视觉感知跌倒检测算法[J].杭州电子科技大学学报(自然科学版), 2020, 40(5): 60-66. |
CAI W Y, ZHENG X C, GUO J H, et al. Visual perception fall detection algorithm based on SVM-MultiCNN model[J]. Journal of Hangzhou Dianzi University (Natural Sciences), 2020, 40(5): 60-66. | |
17 | CAO Z, HIDALGO G, SIMON T, et al. OpenPose: realtime multi- person 2D pose estimation using part affinity fields[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2021, 43(1): 172-186. 10.1109/tpami.2019.2929257 |
18 | 袁鹏泰,刘宁钟.基于关节点提取的老年人跌倒检测算法[J].计算机技术与发展, 2019, 29(9): 200-204, 151. 10.3969/j.issn.1673-629X.2019.09.038 |
YUAN P T, LIU N Z. Elderly fall detection algorithm based on joint point extraction[J]. Computer Technology and Development, 2019, 29(9): 200-204, 151. 10.3969/j.issn.1673-629X.2019.09.038 | |
19 | ZHOU X Y, WANG D Q, KRÄHENBÜHL P. Objects as points[EB/OL]. (2019-04-25) [2021-02-05]. . 10.1109/cvpr.2019.00094 |
20 | 李冬冬.基于视频监控的室内跌倒行为检测研究[D].南昌:南昌大学, 2020: 33-51. 10.18402/resci.2020.05.04 |
LI D D. Research on indoor fall behavior detection based on video monitoring[D]. Nanchang: Nanchang University, 2020: 33-51. 10.18402/resci.2020.05.04 | |
21 | CAI X, LIU X Y, AN M Y, et al. Vision-based fall detection using dense block with multi-channel convolutional fusion strategy[J]. IEEE Access, 2021, 9: 18318-18325. 10.1109/access.2021.3054469 |
22 | MERROUCHE F, BAHA N. Fall detection based on shape deformation[J]. Multimedia Tools and Applications, 2020, 79(41/42): 30489-30508. 10.1007/s11042-019-08428-w |
[1] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
[2] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[3] | Xiyuan WANG, Zhancheng ZHANG, Shaokang XU, Baocheng ZHANG, Xiaoqing LUO, Fuyuan HU. Unsupervised cross-domain transfer network for 3D/2D registration in surgical navigation [J]. Journal of Computer Applications, 2024, 44(9): 2911-2918. |
[4] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
[5] | Yunchuan HUANG, Yongquan JIANG, Juntao HUANG, Yan YANG. Molecular toxicity prediction based on meta graph isomorphism network [J]. Journal of Computer Applications, 2024, 44(9): 2964-2969. |
[6] | Yuhan LIU, Genlin JI, Hongping ZHANG. Video pedestrian anomaly detection method based on skeleton graph and mixed attention [J]. Journal of Computer Applications, 2024, 44(8): 2551-2557. |
[7] | Yanjie GU, Yingjun ZHANG, Xiaoqian LIU, Wei ZHOU, Wei SUN. Traffic flow forecasting via spatial-temporal multi-graph fusion [J]. Journal of Computer Applications, 2024, 44(8): 2618-2625. |
[8] | Qianhong SHI, Yan YANG, Yongquan JIANG, Xiaocao OUYANG, Wubo FAN, Qiang CHEN, Tao JIANG, Yuan LI. Multi-granularity abrupt change fitting network for air quality prediction [J]. Journal of Computer Applications, 2024, 44(8): 2643-2650. |
[9] | Yiqun ZHAO, Zhiyu ZHANG, Xue DONG. Anisotropic travel time computation method based on dense residual connection physical information neural networks [J]. Journal of Computer Applications, 2024, 44(7): 2310-2318. |
[10] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[11] | Xun SUN, Ruifeng FENG, Yanru CHEN. Monocular 3D object detection method integrating depth and instance segmentation [J]. Journal of Computer Applications, 2024, 44(7): 2208-2215. |
[12] | Zheng WU, Zhiyou CHENG, Zhentian WANG, Chuanjian WANG, Sheng WANG, Hui XU. Deep learning-based classification of head movement amplitude during patient anaesthesia resuscitation [J]. Journal of Computer Applications, 2024, 44(7): 2258-2263. |
[13] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[14] | Zhi ZHANG, Xin LI, Naifu YE, Kaixi HU. DKP: defending against model stealing attacks based on dark knowledge protection [J]. Journal of Computer Applications, 2024, 44(7): 2080-2086. |
[15] | Yajuan ZHAO, Fanjun MENG, Xingjian XU. Review of online education learner knowledge tracing [J]. Journal of Computer Applications, 2024, 44(6): 1683-1698. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||