[1] ARMBRUST M, FOX A, GRIFFITH R, et al. A view of cloud computing[J]. Communications of the ACM, 2010, 53(4):50-58. [2] XU P, ZHANG Y, SUN S. PaaS cloud resource scheduling techno-logy research[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2013, S2(41):53-56. [3] XU L, ZHANG S, LI J. A density based performance prediction model for cloud services[C]//Proceedings of the 2013 International Conference on Cloud Computing and Big Data. Washington, DC:IEEE Computer Society, 2013:92-99. [4] HU Y, DENG B, PENG F, et al. Workload prediction for cloud computing elasticity mechanism[C]//Proceedings of the 2016 IEEE International Conference on Cloud Computing and Big Data Analysis. Piscataway, NJ:IEEE, 2016:244-249. [5] 周文俊,曹健.基于预测及蚁群算法的云计算资源调度策略[J].计算机仿真,2012,29(9):239-242.(ZHOU W J, CAO J. Cloud computing resource scheduling strategy based on prediction and ACO algorithm[J]. Computer Simulation, 2012, 29(9):239-242.) [6] WANG C, HUNG W, YANG C. A prediction based energy conserving resources allocation scheme for cloud computing[C]//Proceedings of the 2014 IEEE International Conference on Granular Computing. Piscataway, NJ:IEEE, 2014:320-324. [7] GONG Z, GU X, WILKES J. Press:predictive elastic resource scaling for cloud systems[C]//Proceedings of the 2010 International Conference on Network and Service Management. Piscataway, NJ:IEEE, 2010:9-16. [8] ROY N, DUBEY A, GOKHALE A. Efficient autoscaling in the cloud using predictive models for workload forecasting[C]//Proceedings of the 4th IEEE International Conference on Cloud Computing. Piscataway, NJ:IEEE, 2011:500-507. [9] SONG W, XIAO Z, CHEN Q. Dynamic resource allocation using virtual machines for cloud computing environment[J]. IEEE Transactions on Parallel and Distributed Systems, 2013, 24(6):1107-1117. [10] 徐浩.基于神经网络的虚拟机能耗预测模型研究[D].北京:北京邮电大学,2015:41-49.(XU H. Research on neural network based virtual machine's power prediction model[D]. Beijing:Beijing University of Posts and Telecommunications, 2015:41-49.) [11] 王维,张英堂.BP神经网络进行时问序列预测的不足及改进[J].计算机工程与设计,2007,28(21):5292-5294.(WANG W, ZHANG Y T. Analysis and improving way of BP ANN in predicting time series data[J]. Computer Engineering and Design, 2007, 28(21):5292-5294.) [12] 孟煜,张斌,郭军,等.云计算环境下云服务用户并发量的区间预测模型[J].计算机学报,2017,40(2):378-396.(MENG Y, ZHANG B, GUO J, et al. Prediction interval estimation model of user concurrent request for cloud service in cloud environment[J]. Chinese Journal of Computers, 2017, 40(2):378-396.) [13] JIANG Y, PERNG C, CHEN R, et al. ASAP:a self-adaptive prediction system for instant cloud resource demand provisioning[C]//Proceedings of the 2011 IEEE 11th International Conference on Data Mining. Piscataway, NJ:IEEE, 2011:1104-1109. [14] PARK S, MUN Y. Prediction method about power consumption by using utilization rate of resource in cloud computing environment[C]//Proceedings of the 2016 International Conference on Big Data and Smart Computing. Piscataway, NJ:IEEE, 2016:265-268. [15] 温鉴荣.PaaS云平台中Java Web应用调度机制的研究与实现[D].北京:北京邮电大学,2013:10-19.(WEN J R. Research and implementation of Java Web application scheduling mechanism in PaaS[D]. Beijing:Beijing University of Posts and Telecommunications, 2013:10-19.) [16] CHEN H, FU X, TANG Z, et al. Resource monitoring and prediction in cloud computing environments[C]//Proceedings of the 3rd International Conference on Applied Computing and Information Technology/2nd International Conference on Computational Science and Intelligence. Piscataway, NJ:IEEE, 2015:288-292. [17] XU D, ZHANG X. An incremental clustering pattern sequence-based short-term load prediction for cloud computing[J]. International Journal of Grid and Utility Computing, 2016, 7(4):304-312.) [18] SHUMWAY R H, STOFFER D S. Time Series Analysis and Its Applications:with R Examples[M]. Berlin:Springer, 2006:84-165. [19] 张显,王建学,王锡凡,等.考虑多重周期性的短期电价预测[J].电力系统自动化,2007,31(3):4-8.(ZHANG X, WANG J X, WANG X F, et al. Short-term electricity price forecasting based on price subsequences[J]. Automation of Electric Power Systems, 2007, 31(3):4-8.) [20] 沈富可,张卫,常潘.应用时间序列分析进行网络负载预测[J].中山大学学报(自然科学版),2009,48(S1):84-86.(SHEN F K, ZHANG W, CHANG P. Time series analysis used to predict network load[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2009, 48(S1):84-86.) [21] 赵宏伟,申德荣,田力威.云计算环境下资源需求预测与调度方法的研究[J].小型微型计算机系统,2016,37(4):659-663.(ZHAO H W, SHEN D R, TIAN L W. Research on resources forecasting and scheduling method in cloud computing environment[J]. Journal of Chinese Computer Systems, 2016, 37(4):659-663.) |