Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (6): 1824-1831.DOI: 10.11772/j.issn.1001-9081.2023060799
Special Issue: 数据科学与技术
• Data science and technology • Previous Articles Next Articles
					
						                                                                                                                                                                                                                    Zexin XU, Lei YANG( ), Kangshun LI
), Kangshun LI
												  
						
						
						
					
				
Received:2023-06-25
															
							
																	Revised:2023-08-10
															
							
																	Accepted:2023-08-14
															
							
							
																	Online:2023-08-21
															
							
																	Published:2024-06-10
															
							
						Contact:
								Lei YANG   
													About author:XU Zexin, born in 1998, M. S. candidate. His research interests include data mining, deep learning.Supported by:通讯作者:
					杨磊
							作者简介:徐泽鑫(1998—),男,广东饶平人,硕士研究生,主要研究方向:数据挖掘、深度学习基金资助:CLC Number:
Zexin XU, Lei YANG, Kangshun LI. Shorter long-sequence time series forecasting model[J]. Journal of Computer Applications, 2024, 44(6): 1824-1831.
徐泽鑫, 杨磊, 李康顺. 较短的长序列时间序列预测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1824-1831.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023060799
| 预测步长 | 输入长度 | 标签长度 | 
|---|---|---|
| 24 | 96 | 48 | 
| 48 | 128 | 64 | 
| 72 | 152 | 86 | 
| 96 | 176 | 110 | 
| 168 | 256 | 192 | 
Tab.1 Dataset production parameters for multi-step forecasting with different forecasting steps
| 预测步长 | 输入长度 | 标签长度 | 
|---|---|---|
| 24 | 96 | 48 | 
| 48 | 128 | 64 | 
| 72 | 152 | 86 | 
| 96 | 176 | 110 | 
| 168 | 256 | 192 | 
| 数据集 | 类型 | SLTSFM | SLTSFM- | LSTM+ | GRU | TCN | SeriesNet | LCS | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | ||
| ETT | U | 0.107 | 0.255 | 0.181 | 0.351 | 0.584 | 0.663 | 0.584 | 0.663 | 0.591 | 0.668 | 0.586 | 0.664 | 0.583 | 0.663 | 
| M | 0.586 | 0.556 | 1.006 | 0.760 | 0.861 | 0.676 | 0.855 | 0.670 | 0.972 | 0.739 | 0.846 | 0.667 | 0.957 | 0.742 | |
| PM2.5A | U | 0.817 | 0.629 | 1.058 | 0.765 | 0.914 | 0.730 | 0.906 | 0.727 | 1.025 | 0.754 | 0.964 | 0.738 | 0.935 | 0.727 | 
| M | 0.587 | 0.429 | 1.376 | 0.746 | 0.709 | 0.528 | 0.699 | 0.524 | 0.822 | 0.697 | 0.748 | 0.538 | 0.811 | 0.568 | |
| PM2.5B | U | 0.696 | 0.647 | 0.888 | 0.790 | 0.701 | 0.661 | 0.687 | 0.653 | 0.752 | 0.675 | 0.719 | 0.663 | 0.748 | 0.671 | 
| M | 1.048 | 0.716 | 1.581 | 1.007 | 1.007 | 0.747 | 0.993 | 0.740 | 1.182 | 0.816 | 1.026 | 0.743 | 1.124 | 0.797 | |
| WTH | U | 0.306 | 0.423 | 0.907 | 0.786 | 0.491 | 0.521 | 0.499 | 0.526 | 0.807 | 0.722 | 0.657 | 0.626 | 0.767 | 0.694 | 
| M | 0.535 | 0.513 | 0.935 | 0.749 | 0.598 | 0.551 | 0.608 | 0.550 | 0.820 | 0.697 | 0.671 | 0.599 | 0.732 | 0.643 | |
Tab. 2 Average metrics of various models for five different forecasting steps on four datasets
| 数据集 | 类型 | SLTSFM | SLTSFM- | LSTM+ | GRU | TCN | SeriesNet | LCS | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | ||
| ETT | U | 0.107 | 0.255 | 0.181 | 0.351 | 0.584 | 0.663 | 0.584 | 0.663 | 0.591 | 0.668 | 0.586 | 0.664 | 0.583 | 0.663 | 
| M | 0.586 | 0.556 | 1.006 | 0.760 | 0.861 | 0.676 | 0.855 | 0.670 | 0.972 | 0.739 | 0.846 | 0.667 | 0.957 | 0.742 | |
| PM2.5A | U | 0.817 | 0.629 | 1.058 | 0.765 | 0.914 | 0.730 | 0.906 | 0.727 | 1.025 | 0.754 | 0.964 | 0.738 | 0.935 | 0.727 | 
| M | 0.587 | 0.429 | 1.376 | 0.746 | 0.709 | 0.528 | 0.699 | 0.524 | 0.822 | 0.697 | 0.748 | 0.538 | 0.811 | 0.568 | |
| PM2.5B | U | 0.696 | 0.647 | 0.888 | 0.790 | 0.701 | 0.661 | 0.687 | 0.653 | 0.752 | 0.675 | 0.719 | 0.663 | 0.748 | 0.671 | 
| M | 1.048 | 0.716 | 1.581 | 1.007 | 1.007 | 0.747 | 0.993 | 0.740 | 1.182 | 0.816 | 1.026 | 0.743 | 1.124 | 0.797 | |
| WTH | U | 0.306 | 0.423 | 0.907 | 0.786 | 0.491 | 0.521 | 0.499 | 0.526 | 0.807 | 0.722 | 0.657 | 0.626 | 0.767 | 0.694 | 
| M | 0.535 | 0.513 | 0.935 | 0.749 | 0.598 | 0.551 | 0.608 | 0.550 | 0.820 | 0.697 | 0.671 | 0.599 | 0.732 | 0.643 | |
| 模型 | ETT | PM2.5A | PM2.5B | WTH | 平均排名 | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 单变量 | 多变量 | 单变量 | 多变量 | 单变量 | 多变量 | 单变量 | 多变量 | ||||||||||
| MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | ||
| SLTSFM | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 4 | 1 | 1 | 1 | 1 | 1 | 1.25 | 
| SLTSFM- | 2 | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 6.38 | 
| LSTM+ | 5 | 5 | 4 | 4 | 3 | 4 | 3 | 3 | 3 | 3 | 2 | 4 | 2 | 2 | 2 | 3 | 3.25 | 
| GRU | 4 | 4 | 3 | 3 | 2 | 2 | 2 | 2 | 1 | 2 | 1 | 2 | 3 | 3 | 3 | 2 | 2.44 | 
| TCN | 7 | 7 | 6 | 5 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6.06 | 
| SeriesNet | 6 | 6 | 2 | 2 | 5 | 5 | 4 | 4 | 4 | 4 | 3 | 3 | 4 | 4 | 4 | 4 | 4.00 | 
| LCS | 3 | 3 | 5 | 6 | 4 | 3 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 4.63 | 
Tab. 3 Experimental result ranking of various models on test set
| 模型 | ETT | PM2.5A | PM2.5B | WTH | 平均排名 | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 单变量 | 多变量 | 单变量 | 多变量 | 单变量 | 多变量 | 单变量 | 多变量 | ||||||||||
| MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | ||
| SLTSFM | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 4 | 1 | 1 | 1 | 1 | 1 | 1.25 | 
| SLTSFM- | 2 | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 6.38 | 
| LSTM+ | 5 | 5 | 4 | 4 | 3 | 4 | 3 | 3 | 3 | 3 | 2 | 4 | 2 | 2 | 2 | 3 | 3.25 | 
| GRU | 4 | 4 | 3 | 3 | 2 | 2 | 2 | 2 | 1 | 2 | 1 | 2 | 3 | 3 | 3 | 2 | 2.44 | 
| TCN | 7 | 7 | 6 | 5 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6.06 | 
| SeriesNet | 6 | 6 | 2 | 2 | 5 | 5 | 4 | 4 | 4 | 4 | 3 | 3 | 4 | 4 | 4 | 4 | 4.00 | 
| LCS | 3 | 3 | 5 | 6 | 4 | 3 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 4.63 | 
| 1 | 徐晓芳,管瑞.基于神经网络集成学习算法的金融时间序列预测[J]. 计算机系统应用, 2022, 31(6): 29-37. | 
| XU X F, GUAN R. Financial time series forecasting based on neural network ensemble learning algorithms[J]. Computer Systems & Applications, 2022, 31(6): 29-37. | |
| 2 | 李毅,彭晋卿,廖维,等.一种基于时间序列的集成电力负荷预测方法研究[J].建筑科学, 2022, 38(10): 190-197. | 
| LI Y, PENG J Q, LIAO W, et al. Research on an integrated model for electrical load forecasting based on time series [J]. Building Science, 2022, 38(10): 190-197. | |
| 3 | 夏进,王正群,朱世明.基于时间序列分解的交通流量预测模型[J]. 计算机应用, 2023, 43(4): 1129-1135. | 
| XIA J, WANG Z Q, ZHU S M. Traffic flow prediction model based on time series decomposition[J]. Journal of Computer Applications, 2023, 43(4): 1129-1135. | |
| 4 | 王海起,王志海,李留珂,等.基于网格划分的城市短时交通流量时空预测模型[J]. 计算机应用, 2022, 42(7): 2274-2280. | 
| WANG H Q, WANG Z H, LI L K, et al. Spatial-temporal prediction model of urban short-term traffic flow based on grid division[J]. Journal of Computer Applications, 2022, 42(7): 2274-2280. | |
| 5 | HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. | 
| 6 | CHO K, VAN MERRIËNBOER B, BAHDANAU D, et al. On the properties of neural machine translation: encoder-decoder approaches [EB/OL]. (2014-10-07) [2023-06-20]. . | 
| 7 | BOX G E P, JENKINS G M, REINSEL G C, et al. Time Series Analysis: Forecasting and Control[M]. 5th ed. Hoboken: John Wiley & Sons, 2015: 88-94. | 
| 8 | DRUCKER H, BURGES C J C, KAUFMAN L, et al. Support vector regression machines [C]// Proceedings of the 9th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 1997: 155-161. | 
| 9 | LeCUN Y, BOSER B, DENKER J S, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, 1(4): 541-551. | 
| 10 | SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequence learning with neural networks[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2014: 3104-3112. | 
| 11 | BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate [EB/OL]. (2016-05-19) [2023-06-20]. . | 
| 12 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates, 2017: 6000-6010. | 
| 13 | HOPFIELD J J. Neural networks and physical systems with emergent collective computational abilities[J]. Proceedings of the National Academy of Sciences of the United States of America, 1982, 79(8): 2554-2558. | 
| 14 | ZHOU H, ZHANG S, PENG J, et al. Informer: beyond efficient Transformer for long sequence time-series forecasting[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Menlo Park: AAAI Press, 2021: 11106-11115. | 
| 15 | LIANG X, ZOU T, GUO B, et al. Assessing Beijing’s PM2.5 pollution: severity, weather impact, APEC and winter heating[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471: 20150257. | 
| 16 | ZHENG Y, YI X, LI M, et al. Forecasting fine-grained air quality based on big data[C]// Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2015: 2267-2276. | 
| 17 | BAI S, KOLTER J Z, KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling [EB/OL]. (2018-04-19) [2023-06-20]. . | 
| 18 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016:770-778. | 
| 19 | SHEN Z, ZHANG Y, LU J, et al. A novel time series forecasting model with deep learning[J]. Neurocomputing, 2020, 396: 302-313. | 
| 20 | YI S, LIU H, CHEN T, et al. A deep LSTM-CNN based on self-attention mechanism with input data reduction for short-term load forecasting[J]. IET Generation, Transmission & Distribution, 2023, 17(7): 1538-1552. | 
| [1] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. | 
| [2] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. | 
| [3] | Runze TIAN, Yulong ZHOU, Hong ZHU, Gang XUE. Local information based path selection algorithm for service migration [J]. Journal of Computer Applications, 2024, 44(7): 2168-2174. | 
| [4] | Yue LIU, Fang LIU, Aoyun WU, Qiuyue CHAI, Tianxiao WANG. 3D object detection network based on self-attention mechanism and graph convolution [J]. Journal of Computer Applications, 2024, 44(6): 1972-1977. | 
| [5] | Rong HUANG, Junjie SONG, Shubo ZHOU, Hao LIU. Image aesthetic quality evaluation method based on self-supervised vision Transformer [J]. Journal of Computer Applications, 2024, 44(4): 1269-1276. | 
| [6] | Xinran LUO, Tianrui LI, Zhen JIA. Chinese medical named entity recognition based on self-attention mechanism and lexicon enhancement [J]. Journal of Computer Applications, 2024, 44(2): 385-392. | 
| [7] | Ziqi HUANG, Jianpeng HU. Entity category enhanced nested named entity recognition in automotive domain [J]. Journal of Computer Applications, 2024, 44(2): 377-384. | 
| [8] | Liqing QIU, Xiaopan SU. Personalized multi-layer interest extraction click-through rate prediction model [J]. Journal of Computer Applications, 2024, 44(11): 3411-3418. | 
| [9] | Xingyao YANG, Hongtao SHEN, Zulian ZHANG, Jiong YU, Jiaying CHEN, Dongxiao WANG. Sequential recommendation based on hierarchical filter and temporal convolution enhanced self-attention network [J]. Journal of Computer Applications, 2024, 44(10): 3090-3096. | 
| [10] | Xiaoyu HUA, Dongfen LI, You FU, Kejun BI, Shi YING, Ruijin WANG. Industrial chain risk assessment and early warning model combining hierarchical graph neural network and long short-term memory [J]. Journal of Computer Applications, 2024, 44(10): 3223-3231. | 
| [11] | Yanbo LI, Qing HE, Shunyi LU. Aspect sentiment triplet extraction integrating semantic and syntactic information [J]. Journal of Computer Applications, 2024, 44(10): 3275-3280. | 
| [12] | Yuxiang LIN, Yunbing WU, Aiying YIN, Xiangwen LIAO. Multi-modal summarization model based on semantic relevance analysis [J]. Journal of Computer Applications, 2024, 44(1): 65-72. | 
| [13] | Jia CHEN, Hong ZHANG. Image text retrieval method based on feature enhancement and semantic correlation matching [J]. Journal of Computer Applications, 2024, 44(1): 16-23. | 
| [14] | Zhiping ZHU, Yan YANG, Jie WANG. Scene graph-aware cross-modal image captioning model [J]. Journal of Computer Applications, 2024, 44(1): 58-64. | 
| [15] | Li’an CHEN, Yi GUO. Text sentiment analysis model based on individual bias information [J]. Journal of Computer Applications, 2024, 44(1): 145-151. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||