Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (9): 2909-2916.DOI: 10.11772/j.issn.1001-9081.2021071206
• Multimedia computing and computer simulation • Previous Articles Next Articles
					
						                                                                                                                                                                                                                                                                                                                                                    Hanqing LIU1, Xiaodong KANG1( ), Fuqing ZHANG2, Xiuyuan ZHAO2, Jingyi YANG1, Xiaotian WANG1, Mengfan LI3
), Fuqing ZHANG2, Xiuyuan ZHAO2, Jingyi YANG1, Xiaotian WANG1, Mengfan LI3
												  
						
						
						
					
				
Received:2021-07-12
															
							
																	Revised:2021-09-15
															
							
																	Accepted:2021-09-22
															
							
							
																	Online:2022-09-19
															
							
																	Published:2022-09-10
															
							
						Contact:
								Xiaodong KANG   
													About author:LIU Hanqing, born in 1997, M. S. candidate. His research interests include medical image processing.Supported by:
        
                   
            刘汉卿1, 康晓东1( ), 张福青2, 赵秀圆2, 杨靖怡1, 王笑天1, 李梦凡3
), 张福青2, 赵秀圆2, 杨靖怡1, 王笑天1, 李梦凡3
                  
        
        
        
        
    
通讯作者:
					康晓东
							作者简介:刘汉卿(1997—),男,湖南衡阳人,硕士研究生,主要研究方向:医学图像处理;基金资助:CLC Number:
Hanqing LIU, Xiaodong KANG, Fuqing ZHANG, Xiuyuan ZHAO, Jingyi YANG, Xiaotian WANG, Mengfan LI. Image detection algorithm of cerebral arterial stenosis by improved Libra region-convolutional neural network[J]. Journal of Computer Applications, 2022, 42(9): 2909-2916.
刘汉卿, 康晓东, 张福青, 赵秀圆, 杨靖怡, 王笑天, 李梦凡. 改进的Libra区域卷积神经网络的脑动脉狭窄影像学检测算法[J]. 《计算机应用》唯一官方网站, 2022, 42(9): 2909-2916.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021071206
| 算法 | Backbone | FPS | AP/% | AP50/% | AP75/% | APS/% | 
|---|---|---|---|---|---|---|
| Faster R-CNN[ | ResNet50 | 37.7 | 47.3 | 96.2 | 31.3 | 47.3 | 
| YOLOv3[ | ResNet50 | 56.2 | 43.9 | 95.9 | 24.6 | 43.9 | 
| Libra R-CNN[ | ResNet50 | 33.7 | 47.6 | 96.0 | 35.8 | 47.6 | 
| Cascade R-CNN[ | ResNet50 | 26.1 | 49.8 | 94.8 | 41.8 | 49.8 | 
| 本文算法 | ResNet50 | 22.9 | 51.9 | 97.3 | 42.7 | 51.6 | 
Tab.1 Comparison results of experiment 1
| 算法 | Backbone | FPS | AP/% | AP50/% | AP75/% | APS/% | 
|---|---|---|---|---|---|---|
| Faster R-CNN[ | ResNet50 | 37.7 | 47.3 | 96.2 | 31.3 | 47.3 | 
| YOLOv3[ | ResNet50 | 56.2 | 43.9 | 95.9 | 24.6 | 43.9 | 
| Libra R-CNN[ | ResNet50 | 33.7 | 47.6 | 96.0 | 35.8 | 47.6 | 
| Cascade R-CNN[ | ResNet50 | 26.1 | 49.8 | 94.8 | 41.8 | 49.8 | 
| 本文算法 | ResNet50 | 22.9 | 51.9 | 97.3 | 42.7 | 51.6 | 
| 算法 | FPS | AP/% | AP50/% | AP75/% | APS/% | 
|---|---|---|---|---|---|
| Libra R-CNN | 33.7 | 47.6 | 96.0 | 35.8 | 47.6 | 
| Libra R-CNN+DCN | 32.0 | 47.8 | 95.2 | 36.8 | 47.9 | 
| Libra R-CNN+DCN+Cascade | 22.7 | 50.5 | 95.9 | 42.8 | 50.8 | 
| Libra R-CNN+DCN+Cascade+Non-Local NN | 22.9 | 51.9 | 97.3 | 42.7 | 51.6 | 
Tab.2 Ablation results of experiment 1
| 算法 | FPS | AP/% | AP50/% | AP75/% | APS/% | 
|---|---|---|---|---|---|
| Libra R-CNN | 33.7 | 47.6 | 96.0 | 35.8 | 47.6 | 
| Libra R-CNN+DCN | 32.0 | 47.8 | 95.2 | 36.8 | 47.9 | 
| Libra R-CNN+DCN+Cascade | 22.7 | 50.5 | 95.9 | 42.8 | 50.8 | 
| Libra R-CNN+DCN+Cascade+Non-Local NN | 22.9 | 51.9 | 97.3 | 42.7 | 51.6 | 
| 算法 | Backbone | FPS | AP/% | AP50/% | AP75/% | APS/% | 
|---|---|---|---|---|---|---|
| Faster R-CNN[ | ResNet50 | 36.7 | 52.0 | 94.1 | 54.0 | 53.8 | 
| YOLOv3[ | ResNet50 | 57.4 | 47.2 | 92.2 | 47.0 | 37.8 | 
| Libra R-CNN[ | ResNet50 | 33.2 | 53.2 | 95.7 | 53.9 | 53.4 | 
| Cascade R-CNN[ | ResNet50 | 24.8 | 56.1 | 91.0 | 63.4 | 56.1 | 
| 本文算法 | ResNet50 | 22.3 | 59.8 | 99.3 | 66.9 | 59.8 | 
Tab.3 Comparison results of experiment 2
| 算法 | Backbone | FPS | AP/% | AP50/% | AP75/% | APS/% | 
|---|---|---|---|---|---|---|
| Faster R-CNN[ | ResNet50 | 36.7 | 52.0 | 94.1 | 54.0 | 53.8 | 
| YOLOv3[ | ResNet50 | 57.4 | 47.2 | 92.2 | 47.0 | 37.8 | 
| Libra R-CNN[ | ResNet50 | 33.2 | 53.2 | 95.7 | 53.9 | 53.4 | 
| Cascade R-CNN[ | ResNet50 | 24.8 | 56.1 | 91.0 | 63.4 | 56.1 | 
| 本文算法 | ResNet50 | 22.3 | 59.8 | 99.3 | 66.9 | 59.8 | 
| 算法 | FPS | AP/% | AP50/% | AP75/% | APS/% | 
|---|---|---|---|---|---|
| Libra R-CNN | 33.2 | 53.2 | 95.7 | 53.9 | 53.4 | 
| Libra R-CNN+DCN | 32.1 | 53.9 | 91.4 | 55.0 | 53.3 | 
| Libra R-CNN+DCN+Cascade | 23.0 | 55.6 | 92.5 | 58.2 | 55.6 | 
| Libra R-CNN+DCN+ Cascade+Non-Local | 22.3 | 59.8 | 99.3 | 66.9 | 59.8 | 
Tab.4 Ablation results of experiment 2
| 算法 | FPS | AP/% | AP50/% | AP75/% | APS/% | 
|---|---|---|---|---|---|
| Libra R-CNN | 33.2 | 53.2 | 95.7 | 53.9 | 53.4 | 
| Libra R-CNN+DCN | 32.1 | 53.9 | 91.4 | 55.0 | 53.3 | 
| Libra R-CNN+DCN+Cascade | 23.0 | 55.6 | 92.5 | 58.2 | 55.6 | 
| Libra R-CNN+DCN+ Cascade+Non-Local | 22.3 | 59.8 | 99.3 | 66.9 | 59.8 | 
| 1 | HSIEH Y Z, LUO Y C, PAN C, et al. Cerebral small vessel disease biomarkers detection on MRI-sensor-based image and deep learning[J]. Sensors, 2019, 19(11): No.2573. 10.3390/s19112573 | 
| 2 | BASH S, VILLABLANCA J P, JAHAN R, et al. Intracranial vascular stenosis and occlusive disease: evaluation with CT angiography, MR angiography, and digital subtraction angiography[J]. American Journal of Neuroradiology, 2005, 26(5): 1012-1021. | 
| 3 | WADDLE S L, JUTTUKONDA M R, LANTS S K, et al. Classifying intracranial stenosis disease severity from functional MRI data using machine learning[J]. Journal of Cerebral Blood Flow and Metabolism, 2020, 40(4): 705-719. 10.1177/0271678x19848098 | 
| 4 | HSU K C, LIN C H, JOHNSON K R, et al. Autodetect extracranial and intracranial artery stenosis by machine learning using ultrasound[J]. Computers in Biology and Medicine, 2020, 116: No.103569. 10.1016/j.compbiomed.2019.103569 | 
| 5 | ARAKI T, JAIN P K, SURI H S, et al. Stroke risk stratification and its validation using ultrasonic echolucent carotid wall plaque morphology: a machine learning paradigm[J]. Computers in Biology and Medicine, 2017, 80:77-96. 10.1016/j.compbiomed.2016.11.011 | 
| 6 | SABA L, JAIN P K, SURI H S, et al. Plaque tissue morphology-based stroke risk stratification using carotid ultrasound: a polling-based PCA learning paradigm[J]. Journal of Medical Systems, 2017, 41(6): No.98. 10.1007/s10916-017-0745-0 | 
| 7 | HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. 10.1109/tpami.2015.2389824 | 
| 8 | GIRSHICK R. Fast R-CNN[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1440-1448. 10.1109/iccv.2015.169 | 
| 9 | REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2015:91-99. | 
| 10 | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944. 10.1109/cvpr.2017.106 | 
| 11 | JOO B, AHN S S, YOON P H, et al. A deep learning algorithm may automate intracranial aneurysm detection on MR angiography with high diagnostic performance[J]. European Radiology, 2020, 30(11):5785-5793. 10.1007/s00330-020-06966-8 | 
| 12 | SMISTAD E, LØVSTAKKEN L. Vessel detection in ultrasound images using deep convolutional neural networks[C]// Proceedings of the 2016 International Workshop on Deep Learning in Medical Image Analysis/2016 International Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis, LNCS 10008. Cham: Springer, 2016: 30-38. | 
| 13 | STIB M T, VASQUEZ J, DONG M P, et al. Detecting large vessel occlusion at multiphase CT angiography by using a deep convolutional neural network[J]. Radiology, 2020, 297(3): 640-649. 10.1148/radiol.2020200334 | 
| 14 | DE MAN Q, HANEDA E, CLAUS B, et al. A two-dimensional feasibility study of deep learning-based feature detection and characterization directly from CT sinograms[J]. Medical Physics, 2019, 46(12): e790-e800. 10.1002/mp.13640 | 
| 15 | 胡涛,苏佳斌,杨恒,等. 基于注意力机制的CNN和GRU烟雾病检测方法研究[J]. 航天医学与医学工程, 2021, 34(1):68-74. 10.16289/j.cnki.1002-0837.2021.01.011 | 
| HU T, SU J B, YANG H, et al. Research on detection of moyamoya disease by CNN and GRU based on attention mechanism[J]. Space Medicine and Medical Engineering, 2021, 34(1):68-74. 10.16289/j.cnki.1002-0837.2021.01.011 | |
| 16 | DAI X L, HUANG L X, QIAN Y, et al. Deep learning for automated cerebral aneurysm detection on computed tomography images[J]. International Journal of Computer Assisted Radiology and Surgery, 2020, 15(4): 715-723. 10.1007/s11548-020-02121-2 | 
| 17 | YANG J H, XIE M F, HU C P, et al. Deep learning for detecting cerebral aneurysms with CT angiography[J]. Radiology, 2021, 298(1): 155-163. 10.1148/radiol.2020192154 | 
| 18 | SHINOHARA Y, TAKAHASHI N, LEE Y, et al. Development of a deep learning model to identify hyperdense MCA sign in patients with acute ischemic stroke[J]. Japanese Journal of Radiology, 2020, 38(2): 112-117. 10.1007/s11604-019-00894-4 | 
| 19 | 卫渊,朱光宇,颜格,等. 基于卷积神经网络的颅内动脉瘤CTA影像判别[J]. 医用生物力学, 2019, 34(S1):147. | 
| WEI Y, ZHU G Y, YAN G, et al. CTA image discrimination of intracranial aneurysm based on convolutional neural network[J]. Journal of Medical Biomechanics, 2019, 34(S1): 147. | |
| 20 | 秦志光,陈浩,丁熠,等. 基于多模态卷积神经网络的脑血管提取方法研究[J]. 电子科技大学学报, 2016, 45(4):573-581. 10.3969/j.issn.1001-0548.2016.04.010 | 
| QIN Z G, CHEN H, DING Y, et al. Research on brain vessel extraction via multi-modal convolutional neural networks[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(4): 573-581. 10.3969/j.issn.1001-0548.2016.04.010 | |
| 21 | PANG J M, CHEN K, SHI J P, et al. Libra R-CNN: towards balanced learning for object detection[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 821-830. 10.1109/cvpr.2019.00091 | 
| 22 | WANG X L, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7794-7803. 10.1109/cvpr.2018.00813 | 
| 23 | SHOKRI M, HARATI A, TABA K. Salient object detection in video using deep non-local neural networks[J]. Journal of Visual Communication and Image Representation, 2020, 68: No.102769. 10.1016/j.jvcir.2020.102769 | 
| 24 | CAI Z W, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 6154-6162. 10.1109/cvpr.2018.00644 | 
| 25 | REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08) [2021-08-15].. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||