Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (4): 1079-1086.DOI: 10.11772/j.issn.1001-9081.2021071242
Special Issue: CCF第36届中国计算机应用大会 (CCF NCCA 2021)
• The 36 CCF National Conference of Computer Applications (CCF NCCA 2020) • Previous Articles Next Articles
					
						                                                                                                                                                                                                                                                    Junhua GU1,2, Shuai FAN1, Ningning LI1, Suqi ZHANG3( )
)
												  
						
						
						
					
				
Received:2021-07-16
															
							
																	Revised:2021-09-06
															
							
																	Accepted:2021-09-08
															
							
							
																	Online:2021-09-27
															
							
																	Published:2022-04-10
															
							
						Contact:
								Suqi ZHANG   
													About author:GU Junhua, born in1966, Ph. D., professor. His research interests include intelligent information processing, data mining.Supported by:通讯作者:
					张素琪
							作者简介:顾军华(1966—),男,天津人,教授,博士,CCF会员,主要研究方向:智能信息处理、数据挖掘基金资助:CLC Number:
Junhua GU, Shuai FAN, Ningning LI, Suqi ZHANG. Long- and short-term recommendation model and updating method based on knowledge graph preference attention network[J]. Journal of Computer Applications, 2022, 42(4): 1079-1086.
顾军华, 樊帅, 李宁宁, 张素琪. 基于知识图偏好注意力网络的长短期推荐模型及其更新方法[J]. 《计算机应用》唯一官方网站, 2022, 42(4): 1079-1086.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021071242
| 数据集 | 用户量 | 项目量 | 评分量 | 关系数 | 三元组数 | 
|---|---|---|---|---|---|
| MovieLens-1M | 6 036 | 2 347 | 753 772 | 12 | 20 195 | 
| Last.FM | 1 872 | 3 846 | 42 346 | 60 | 15 518 | 
Tab. 1 Dataset statistics
| 数据集 | 用户量 | 项目量 | 评分量 | 关系数 | 三元组数 | 
|---|---|---|---|---|---|
| MovieLens-1M | 6 036 | 2 347 | 753 772 | 12 | 20 195 | 
| Last.FM | 1 872 | 3 846 | 42 346 | 60 | 15 518 | 
| 数据集 | N | d | K | L | λ | lr | batch | 
|---|---|---|---|---|---|---|---|
| MovieLens-1M | 8 | 32 | 1 | 5 | 10-5 | 2×10-2 | 4 096 | 
| Last.FM | 4 | 64 | 1 | 7 | 10-4 | 5×10-4 | 128 | 
Tab. 2 Experimental parameter setting
| 数据集 | N | d | K | L | λ | lr | batch | 
|---|---|---|---|---|---|---|---|
| MovieLens-1M | 8 | 32 | 1 | 5 | 10-5 | 2×10-2 | 4 096 | 
| Last.FM | 4 | 64 | 1 | 7 | 10-4 | 5×10-4 | 128 | 
| L | MovieLens-1M | Last.FM | ||
|---|---|---|---|---|
| AUC | Acc | AUC | Acc | |
| 3 | 0.919 | 0.843 | 0.796 | 0.732 | 
| 5 | 0.923 | 0.849 | 0.797 | 0.735 | 
| 7 | 0.920 | 0.845 | 0.805 | 0.740 | 
| 9 | 0.922 | 0.847 | 0.800 | 0.734 | 
| 11 | 0.921 | 0.848 | 0.796 | 0.734 | 
Tab. 3 Experimental performance of KGPATLS model with different L values
| L | MovieLens-1M | Last.FM | ||
|---|---|---|---|---|
| AUC | Acc | AUC | Acc | |
| 3 | 0.919 | 0.843 | 0.796 | 0.732 | 
| 5 | 0.923 | 0.849 | 0.797 | 0.735 | 
| 7 | 0.920 | 0.845 | 0.805 | 0.740 | 
| 9 | 0.922 | 0.847 | 0.800 | 0.734 | 
| 11 | 0.921 | 0.848 | 0.796 | 0.734 | 
| 模型 | MovieLens-1M | Last.FM | ||
|---|---|---|---|---|
| AUC | Acc | AUC | Acc | |
| CKE | 0.801 | 0.817 | 0.744 | 0.673 | 
| LibFM | 0.892 | 0.812 | 0.778 | 0.710 | 
| RippleNet | 0.901 | 0.820 | 0.780 | 0.718 | 
| KGCN | 0.903 | 0.828 | 0.794 | 0.719 | 
| KGPATLS | 0.923 | 0.849 | 0.805 | 0.740 | 
Tab. 4 Experimental results of different models
| 模型 | MovieLens-1M | Last.FM | ||
|---|---|---|---|---|
| AUC | Acc | AUC | Acc | |
| CKE | 0.801 | 0.817 | 0.744 | 0.673 | 
| LibFM | 0.892 | 0.812 | 0.778 | 0.710 | 
| RippleNet | 0.901 | 0.820 | 0.780 | 0.718 | 
| KGCN | 0.903 | 0.828 | 0.794 | 0.719 | 
| KGPATLS | 0.923 | 0.849 | 0.805 | 0.740 | 
| 数据集 | N | d | K | L | λ1 | λ2 | lr | batch | 
|---|---|---|---|---|---|---|---|---|
| MovieLens-1M | 4 | 32 | 1 | 5 | 2×10-5 | 0.5 | 2×10-4 | 256 | 
| Last.FM | 8 | 16 | 1 | 4 | 10-4 | 0.5 | 5×10-4 | 128 | 
Tab. 5 Parameters of Base Model
| 数据集 | N | d | K | L | λ1 | λ2 | lr | batch | 
|---|---|---|---|---|---|---|---|---|
| MovieLens-1M | 4 | 32 | 1 | 5 | 2×10-5 | 0.5 | 2×10-4 | 256 | 
| Last.FM | 8 | 16 | 1 | 4 | 10-4 | 0.5 | 5×10-4 | 128 | 
| 数据集 | 方法 | AUC | Acc | Training Time i /s | 
|---|---|---|---|---|
| MovieLens-1M | FT | 0.880 4 | 0.798 9 | 1 117 | 
| RS | 0.880 2 | 0.799 4 | 1 245 | |
| FPSKD | 0.880 8 | 0.800 0 | 1 280 | |
| FB | 0.880 6 | 0.800 3 | 11 160 | |
| Last.FM | FT | 0.795 8 | 0.732 7 | 14 | 
| RS | 0.796 1 | 0.732 2 | 18 | |
| FPSKD | 0.796 8 | 0.736 3 | 28 | |
| FB | 0.799 8 | 0.740 4 | 135 | 
Tab. 6 Comparative experimental results of incremental updating methods
| 数据集 | 方法 | AUC | Acc | Training Time i /s | 
|---|---|---|---|---|
| MovieLens-1M | FT | 0.880 4 | 0.798 9 | 1 117 | 
| RS | 0.880 2 | 0.799 4 | 1 245 | |
| FPSKD | 0.880 8 | 0.800 0 | 1 280 | |
| FB | 0.880 6 | 0.800 3 | 11 160 | |
| Last.FM | FT | 0.795 8 | 0.732 7 | 14 | 
| RS | 0.796 1 | 0.732 2 | 18 | |
| FPSKD | 0.796 8 | 0.736 3 | 28 | |
| FB | 0.799 8 | 0.740 4 | 135 | 
| 数据集 | 方法 | AUC | Acc | 
|---|---|---|---|
| MovieLens-1M | PA | 0.880 5 | 0.799 3 | 
| PI | 0.879 7 | 0.799 6 | |
| PS | 0.880 5 | 0.799 4 | |
| FPSKD | 0.880 8 | 0.800 0 | |
| Last.FM | PA | 0.796 8 | 0.730 7 | 
| PI | 0.794 4 | 0.733 7 | |
| PS | 0.796 9 | 0.732 5 | |
| FPSKD | 0.797 4 | 0.736 3 | 
Tab. 7 Comparison of experimental results of FPSKD variants
| 数据集 | 方法 | AUC | Acc | 
|---|---|---|---|
| MovieLens-1M | PA | 0.880 5 | 0.799 3 | 
| PI | 0.879 7 | 0.799 6 | |
| PS | 0.880 5 | 0.799 4 | |
| FPSKD | 0.880 8 | 0.800 0 | |
| Last.FM | PA | 0.796 8 | 0.730 7 | 
| PI | 0.794 4 | 0.733 7 | |
| PS | 0.796 9 | 0.732 5 | |
| FPSKD | 0.797 4 | 0.736 3 | 
| 1 | HU B B, SHI C, ZHAO W X, et al. Leveraging meta-path based context for top-N recommendation with a neural co-attention model[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2018:1531-1540. 10.1145/3219819.3219965 | 
| 2 | ZHANG F Z, YUAN N J, LIAN D F, et al. Collaborative knowledge base embedding for recommender systems[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016:353-362. 10.1145/2939672.2939673 | 
| 3 | JU C H, WANG J, ZHOU G L. The commodity recommendation method for online shopping based on data mining[J]. Multimedia Tools and Applications, 2019, 78(21): 30097-30110. 10.1007/s11042-018-6980-7 | 
| 4 | WU X K, CHENG B, CHEN J L. Collaborative filtering service recommendation based on a novel similarity computation method[J]. IEEE Transactions on Services Computing, 2017, 10(3): 352-365. 10.1109/tsc.2015.2479228 | 
| 5 | XUE F, HE X N, WANG X, et al. Deep item-based collaborative filtering for top-N recommendation[J]. ACM Transactions on Information Systems, 2019, 37(3): No.33. 10.1145/3314578 | 
| 6 | WANG X, WANG D X, XU C R, et al. Explainable reasoning over knowledge graphs for recommendation[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2019: 5329-5336. 10.1609/aaai.v33i01.33015329 | 
| 7 | WANG H W, ZHANG F Z, WANG J L, et al. RippleNet: propagating user preferences on the knowledge graph for recommender systems[C]// Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM, 2018: 417-426. 10.1145/3269206.3271739 | 
| 8 | WANG H W, ZHAO M, XIE X, et al. Knowledge graph convolutional networks for recommender systems[C]// Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 3307-3313. 10.1145/3308558.3313417 | 
| 9 | WANG X, HE X N, CAO Y X, et al. KGAT: knowledge graph attention network for recommendation[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 950-958. 10.1145/3292500.3330989 | 
| 10 | KIRKPATRICK J, PASCANU R, RABINOWITZ N, et al. Overcoming catastrophic forgetting in neural networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(13): 3521-3526. 10.1073/pnas.1611835114 | 
| 11 | WANG Y C, GUO H F, TANG R M, et al. A practical incremental method to train deep CTR models[EB/OL]. (2020-09-04) [2021-05-20].. | 
| 12 | CASTRO F M, MARÍN-JIMÉNEZ M J, GUIL N, et al. End-to-end incremental learning[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11216. Cham: Spring, 2018: 241-257. | 
| 13 | 沈学利,杜志伟. 融合自注意力机制与长短期偏好的序列推荐模型[J]. 计算机应用研究, 2021, 38(5):1371-1375, 1380. | 
| SHEN X L, DU Z W. Sequential recommendation model that combines self-attention mechanism with long-term and short-term preferences[J]. Application Research of Computers, 2021, 38(5):1371-1375, 1380. | |
| 14 | 顾军华,佘士耀,樊帅,等. 基于用户长短期兴趣与知识图卷积网络的推荐[J]. 计算机工程与科学, 2021, 43(3):511-517. 10.3969/j.issn.1007-130X.2021.03.017 | 
| GU J H, SHE S Y, FAN S, et al. Recommendation based on users’ long- and short-term preference and graph convolution network[J]. Computer Engineering and Science, 2021, 43(3):511-517. 10.3969/j.issn.1007-130X.2021.03.017 | |
| 15 | MI F, LIN X Y, FALTINGS B. ADER: adaptively distilled exemplar replay towards continual learning for session-based recommendation[C]// Proceedings of 14th ACM Conference on Recommender Systems. New York: ACM, 2020: 408-413. 10.1145/3383313.3412218 | 
| 16 | XU Y S, ZHANG Y X, GUO W, et al. GraphSAIL: graph structure aware incremental learning for recommender systems[C]// Proceedings of the 29th ACM International Conference on Information and Knowledge Management. New York: ACM, 2020: 2861-2868. 10.1145/3340531.3412754 | 
| 17 | HUANG J, LING C X. Using AUC and accuracy in evaluating learning algorithms[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(3): 299-310. 10.1109/tkde.2005.50 | 
| 18 | ZHANG C T, ZHANG R. Evaluation of gene-finding algorithms by a content-balancing accuracy index[J]. Journal of Biomolecular Structure and Dynamics, 2002, 19(6): 1045-1052. 10.1080/07391102.2002.10506807 | 
| 19 | BORDEES A, USUNIER N, GARCIA-DURÁN A, et al. Translating embeddings for modeling multi-relational data[C]// Proceedings of the 26th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2013: 2787-2795. | 
| 20 | RENDLE S. Factorization machines with libFM[J]. ACM Transactions on Intelligent Systems and Technology, 2012, 3(3): No.57. 10.1145/2168752.2168771 | 
| [1] | Jieru JIA, Jianchao YANG, Shuorui ZHANG, Tao YAN, Bin CHEN. Unsupervised person re-identification based on self-distilled vision Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2893-2902. | 
| [2] | Yubo ZHAO, Liping ZHANG, Sheng YAN, Min HOU, Mao GAO. Relation extraction between discipline knowledge entities based on improved piecewise convolutional neural network and knowledge distillation [J]. Journal of Computer Applications, 2024, 44(8): 2421-2429. | 
| [3] | Xue LI, Guangle YAO, Honghui WANG, Jun LI, Haoran ZHOU, Shaoze YE. Remote sensing image classification based on sample incremental learning [J]. Journal of Computer Applications, 2024, 44(3): 732-736. | 
| [4] | Yuxin HUANG, Yiwang HUANG, Hui HUANG. Meta label correction method based on shallow network predictions [J]. Journal of Computer Applications, 2024, 44(11): 3364-3370. | 
| [5] | Xujian ZHAO, Hanglin LI. Deep neural network compression algorithm based on hybrid mechanism [J]. Journal of Computer Applications, 2023, 43(9): 2686-2691. | 
| [6] | Zhangjian JI, Ming ZHANG, Zilong WANG. High-precision object detection algorithm based on improved VarifocalNet [J]. Journal of Computer Applications, 2023, 43(7): 2147-2154. | 
| [7] | Huaiqing HE, Jianqing YAN, Kanghua HUI. Lightweight face recognition method based on deep residual network [J]. Journal of Computer Applications, 2022, 42(7): 2030-2036. | 
| [8] | Wei REN, Hexiang BAI. Multi-label image classification method based on global and local label relationship [J]. Journal of Computer Applications, 2022, 42(5): 1383-1390. | 
| [9] | ZHANG Cheng, WAN Yuan, QIANG Haopeng. Deep unsupervised discrete cross-modal hashing based on knowledge distillation [J]. Journal of Computer Applications, 2021, 41(9): 2523-2531. | 
| [10] | HUANG Jishuang, ZHANG Hua, LI Yonglong, ZHAO Hao, WANG Haoran, FENG Chuncheng. Hydraulic tunnel defect recognition method based on dynamic feature distillation [J]. Journal of Computer Applications, 2021, 41(8): 2358-2365. | 
| [11] | Zhaoxia DAI, Yudong CAO, Guangming ZHU, Peiyi SHEN, Xu XU, Lin MEI, Liang ZHANG. Specific knowledge learning based on knowledge distillation [J]. Journal of Computer Applications, 2021, 41(12): 3426-3431. | 
| [12] | Taiheng LIU, Zhaoshui HE. Surface defect detection method based on auto-encoding and knowledge distillation [J]. Journal of Computer Applications, 2021, 41(11): 3200-3205. | 
| [13] | WEI Chunwu, ZHAO Juanjuan, TANG Xiaoxian, QIANG Yan. Knowledge extraction method for follow-up data based on multi-term distillation network [J]. Journal of Computer Applications, 2021, 41(10): 2871-2878. | 
| [14] | DENG Qi, LEI Yinjie, TIAN Feng. Optimized convolutional neural network method for classification of pneumonia images [J]. Journal of Computer Applications, 2020, 40(1): 71-76. | 
| [15] | GAO Qinquan, ZHAO Yan, LI Gen, TONG Tong. Compression method of super-resolution convolutional neural network based on knowledge distillation [J]. Journal of Computer Applications, 2019, 39(10): 2802-2808. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||