Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (11): 3603-3609.DOI: 10.11772/j.issn.1001-9081.2021091632
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
					
						                                                                                                                                                                                                                                                                                    Chenguang LI1, Bo ZHANG2, Qian ZHAO2, Xiaoping CHEN1, Xingfu WANG1( )
)
												  
						
						
						
					
				
Received:2021-09-15
															
							
																	Revised:2022-01-17
															
							
																	Accepted:2022-01-28
															
							
							
																	Online:2022-11-14
															
							
																	Published:2022-11-10
															
							
						Contact:
								Xingfu WANG   
													About author:LI Chenguang, born in 1999, M. S. candidate. His research interests include emotion recognition, natural language processing.Supported by:通讯作者:
					王行甫
							作者简介:李晨光(1999—),男,河南许昌人,硕士研究生,主要研究方向:情感识别、自然语言处理基金资助:CLC Number:
Chenguang LI, Bo ZHANG, Qian ZHAO, Xiaoping CHEN, Xingfu WANG. Empathy prediction from texts based on transfer learning[J]. Journal of Computer Applications, 2022, 42(11): 3603-3609.
李晨光, 张波, 赵骞, 陈小平, 王行甫. 基于迁移学习的文本共情预测[J]. 《计算机应用》唯一官方网站, 2022, 42(11): 3603-3609.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021091632
| 样例 | 共情 | 极性 | 
|---|---|---|
| I am so happy that more people will undergo the procedure that can save their lives | 高 | 正 | 
| I really hate ISIS. They must be destroyed so that they won’t hurt another soul. | 高 | 负 | 
| This sounds worrying, but nothing critical, everyone has their own misfortunes. | 低 | 负 | 
Tab. 1 Example for empathy/polarity data
| 样例 | 共情 | 极性 | 
|---|---|---|
| I am so happy that more people will undergo the procedure that can save their lives | 高 | 正 | 
| I really hate ISIS. They must be destroyed so that they won’t hurt another soul. | 高 | 负 | 
| This sounds worrying, but nothing critical, everyone has their own misfortunes. | 低 | 负 | 
| 模型 | Buechel共情数据集 | Zhou共情数据集 | |||||||
|---|---|---|---|---|---|---|---|---|---|
| SemEval | IMDB | SemEval | IMDB | ||||||
| PCC‑EC | PCC‑PD | PCC‑EC | PCC‑PD | MSE | R2 | MSE | R2 | ||
| BiLSTM+AL+HN+AT | 基线 | 0.441 | 0.474 | 0.431 | 0.454 | 0.475 | 0.169 | 0.484 | 0.136 | 
| -AL | 0.434 | 0.460 | 0.421 | 0.442 | 0.508 | 0.115 | 0.497 | 0.115 | |
| -HN | 0.435 | 0.463 | 0.427 | 0.452 | 0.496 | 0.134 | 0.489 | 0.128 | |
| -AT | 0.434 | 0.469 | 0.428 | 0.451 | 0.488 | 0.152 | 0.491 | 0.124 | |
| BERT+AL+HN+AT | -AL | 0.512 | 0.523 | 0.503 | 0.497 | 0.423 | 0.310 | 0.436 | 0.283 | 
| -HN | 0.488 | 0.481 | 0.479 | 0.474 | 0.442 | 0.282 | 0.459 | 0.247 | |
| -AT | 0.498 | 0.502 | 0.483 | 0.492 | 0.437 | 0.280 | 0.448 | 0.258 | |
| -AL | 0.503 | 0.510 | 0.487 | 0.482 | 0.430 | 0.294 | 0.442 | 0.271 | |
Tab. 2 Ablation experimental results on two empathic datasets
| 模型 | Buechel共情数据集 | Zhou共情数据集 | |||||||
|---|---|---|---|---|---|---|---|---|---|
| SemEval | IMDB | SemEval | IMDB | ||||||
| PCC‑EC | PCC‑PD | PCC‑EC | PCC‑PD | MSE | R2 | MSE | R2 | ||
| BiLSTM+AL+HN+AT | 基线 | 0.441 | 0.474 | 0.431 | 0.454 | 0.475 | 0.169 | 0.484 | 0.136 | 
| -AL | 0.434 | 0.460 | 0.421 | 0.442 | 0.508 | 0.115 | 0.497 | 0.115 | |
| -HN | 0.435 | 0.463 | 0.427 | 0.452 | 0.496 | 0.134 | 0.489 | 0.128 | |
| -AT | 0.434 | 0.469 | 0.428 | 0.451 | 0.488 | 0.152 | 0.491 | 0.124 | |
| BERT+AL+HN+AT | -AL | 0.512 | 0.523 | 0.503 | 0.497 | 0.423 | 0.310 | 0.436 | 0.283 | 
| -HN | 0.488 | 0.481 | 0.479 | 0.474 | 0.442 | 0.282 | 0.459 | 0.247 | |
| -AT | 0.498 | 0.502 | 0.483 | 0.492 | 0.437 | 0.280 | 0.448 | 0.258 | |
| -AL | 0.503 | 0.510 | 0.487 | 0.482 | 0.430 | 0.294 | 0.442 | 0.271 | |
| 极性数据量/104 | Buechel共情数据集 | Zhou共情数据集 | ||
|---|---|---|---|---|
| PCC‑EC | PCC‑PD | MSE | R2 | |
| 0 | 0.443 | 0.462 | 0.461 | 0.259 | 
| 1 | 0.499 | 0.518 | 0.434 | 0.276 | 
| 2 | 0.508 | 0.489 | 0.430 | 0.277 | 
| 3 | 0.504 | 0.480 | 0.439 | 0.287 | 
| 4 | 0.503 | 0.492 | 0.442 | 0.285 | 
| 5 | 0.503 | 0.497 | 0.436 | 0.283 | 
Tab. 3 Ablation experimental results based on different polarity data amounts
| 极性数据量/104 | Buechel共情数据集 | Zhou共情数据集 | ||
|---|---|---|---|---|
| PCC‑EC | PCC‑PD | MSE | R2 | |
| 0 | 0.443 | 0.462 | 0.461 | 0.259 | 
| 1 | 0.499 | 0.518 | 0.434 | 0.276 | 
| 2 | 0.508 | 0.489 | 0.430 | 0.277 | 
| 3 | 0.504 | 0.480 | 0.439 | 0.287 | 
| 4 | 0.503 | 0.492 | 0.442 | 0.285 | 
| 5 | 0.503 | 0.497 | 0.436 | 0.283 | 
| 网络 | Buechel 共情数据集 | 网络 | Zhou 共情数据集 | ||
|---|---|---|---|---|---|
| PCC‑EC | PCC‑PD | MSE | R2 | ||
| Ridge | 0.385 | 0.410 | Random Forest | 0.492 | 0.128 | 
| FNN | 0.379 | 0.401 | RoBERTa | 0.429 | 0.297 | 
| CNN | 0.404 | 0.444 | Bi‑LSTM | 0.553 | 0.004 | 
| Bi‑LSTM | 0.407 | 0.426 | BERT | 0.461 | 0.259 | 
| BERT | 0.443 | 0.462 | |||
Tab. 4 Experimental results of methods without transfer learning
| 网络 | Buechel 共情数据集 | 网络 | Zhou 共情数据集 | ||
|---|---|---|---|---|---|
| PCC‑EC | PCC‑PD | MSE | R2 | ||
| Ridge | 0.385 | 0.410 | Random Forest | 0.492 | 0.128 | 
| FNN | 0.379 | 0.401 | RoBERTa | 0.429 | 0.297 | 
| CNN | 0.404 | 0.444 | Bi‑LSTM | 0.553 | 0.004 | 
| Bi‑LSTM | 0.407 | 0.426 | BERT | 0.461 | 0.259 | 
| BERT | 0.443 | 0.462 | |||
| 模型 | Buechel共情数据集 | Zhou共情数据集 | ||
|---|---|---|---|---|
| PCC‑EC | PCC‑PD | MSE | R2 | |
| DATNet | 0.436 | 0.471 | 0.483 | 0.163 | 
| ADV‑SA | 0.429 | 0.466 | 0.497 | 0.119 | 
| Bi‑LSTM+AL+AT+HN | 0.441 | 0.474 | 0.475 | 0.169 | 
| BERT+AL+AT+HN | 0.512 | 0.523 | 0.423 | 0.310 | 
Tab. 5 Experimental results of methods with transfer learning
| 模型 | Buechel共情数据集 | Zhou共情数据集 | ||
|---|---|---|---|---|
| PCC‑EC | PCC‑PD | MSE | R2 | |
| DATNet | 0.436 | 0.471 | 0.483 | 0.163 | 
| ADV‑SA | 0.429 | 0.466 | 0.497 | 0.119 | 
| Bi‑LSTM+AL+AT+HN | 0.441 | 0.474 | 0.475 | 0.169 | 
| BERT+AL+AT+HN | 0.512 | 0.523 | 0.423 | 0.310 | 
| 模型 | 示例1 | 示例2 | ||
|---|---|---|---|---|
| EC | PD | EC | PD | |
| Baseline | 4.82 | 5.24 | 1.85 | 2.21 | 
| 本文方法 | 6.32 | 6.24 | 1.65 | 2.02 | 
| Ground Truth | 7.00 | 6.75 | 1.00 | 1.00 | 
Tab.6 Experimental results of case analysis
| 模型 | 示例1 | 示例2 | ||
|---|---|---|---|---|
| EC | PD | EC | PD | |
| Baseline | 4.82 | 5.24 | 1.85 | 2.21 | 
| 本文方法 | 6.32 | 6.24 | 1.65 | 2.02 | 
| Ground Truth | 7.00 | 6.75 | 1.00 | 1.00 | 
| 1 | BELLET P S, MALONEY M J. The importance of empathy as an interviewing skill in medicine[J]. Journal of the American Medical Association, 1991, 266(13): 1831-1832. 10.1001/jama.266.13.1831 | 
| 2 | BATSON C D, FULTZ J, SCHOENRADE P A. Distress and empathy: two qualitatively distinct vicarious emotions with different motivational consequences[J]. Journal of Personality, 1987, 55(1): 19-39. 10.1111/j.1467-6494.1987.tb00426.x | 
| 3 | BASCH M F. Empathic understanding: a review of the concept and some theoretical considerations[J]. Journal of the American Psychoanalytic Association, 1983, 31(1): 101-126. 10.1177/000306518303100104 | 
| 4 | SOBER E, WILSON D S. Summary of: ‘Unto others: the evolution and psychology of unselfish behavior’[J]. Journal of Consciousness Studies, 2000, 7(1/2): 185-206. | 
| 5 | FUNG P, DEY A, SIDDIQUE F B, et al. Zara the supergirl: an empathetic personality recognition system[C]// Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations. Stroudsburg, PA: Association for Computational Linguistics, 2016: 87-91. 10.18653/v1/n16-3018 | 
| 6 | ALAM F, DANIELI M, RICCARDI G. Annotating and modeling empathy in spoken conversations[J]. Computer Speech & Language, 2018, 50: 40-61. 10.1016/j.csl.2017.12.003 | 
| 7 | MAJUMDER N, HONG P, PENG S, et al. MIME: MIMicking Emotions for empathetic response generation [EB/OL]. [2021-04-28]. . 10.18653/v1/2020.emnlp-main.721 | 
| 8 | BUECHEL S, BUFFONE A, SLAFF B, et al. Modeling empathy and distress in reaction to news stories[EB/OL]. [2021-06-15]. . 10.18653/v1/d18-1507 | 
| 9 | ZHOU N, JURGENS D. Condolences and empathy in online communities[C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2020: 609-626. 10.18653/v1/2020.emnlp-main.45 | 
| 10 | SHARMA A, MINER A S, ATKINS D C, et al. A computational approach to understanding empathy expressed in text‑based mental health support. [EB/OL]. [2021-05-09]. . 10.18653/v1/2020.emnlp-main.425 | 
| 11 | PANG B, LEE L. Seeing stars: exploiting class relationships for sentiment categorization with respect to rating scales[C]// Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2005: 115-124. 10.3115/1219840.1219855 | 
| 12 | ROSENTHAL S, FARRA N, NAKOV P. SemEval‑2017 task 4: sentiment analysis in Twitter[C]// Proceedings of the 11th International Workshop on Semantic Evaluation. Stroudsburg, PA: Association for Computational Linguistics, 2017: 502-518. 10.18653/v1/s17-2088 | 
| 13 | BHATT H S, ROY S, RAJKUMAR A, et al. Learning transferable feature representations using neural networks[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2019: 4124-4134. 10.18653/v1/p19-1404 | 
| 14 | MAAS A, DALY R E, PHAM P T, et al. Learning word vectors for sentiment analysis[C]// Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA: Association for Computational Linguistics, 2011: 142-150. | 
| 15 | XIAO B, CAN D, GEORGIOU P G, et al. Analyzing the language of therapist empathy in motivational interview based psychotherapy[C]// Proceedings of the 2012 Asia Pacific Signal and Information Processing Association Annual Summit and Conference. [S.l.]: PMC, 2012: 6411762. 10.1109/apsipa31516.2013 | 
| 16 | KHANPOUR H, CARAGEA C, BIYANI P. Identifying empathetic messages in online health communities[C]// Proceedings of the Eighth International Joint Conference on Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2017, 2: 246-251. 10.1609/aaai.v32i1.12170 | 
| 17 | ZHOU K, AIELLO L M, SCEPANOVIC S, et al. The language of situational empathy[J]. Proceedings of the ACM on Human‑ Computer Interaction, 2021, 5(CSCW1): Article No. 13. 10.1145/3449087 | 
| 18 | DREDZE M, KULESZA A, CRAMMER K. Multi‑domain learning by confidence‑weighted parameter combination[J]. Machine Learning, 2010, 79(1): 123-149. 10.1007/s10994-009-5148-0 | 
| 19 | PAN S J, YANG Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 22(10): 1345-1359. 10.1109/tkde.2009.191 | 
| 20 | HUANG J, GRETTON A, BORGWARDT K, et al. Correcting sample selection bias by unlabeled data[C]// Proceedings of the 19th International Conference on Neural Information Processing Systems. Cambridge, MA: MIT Press, 2006: 601-608. 10.7551/mitpress/7503.003.0080 | 
| 21 | SUGIYAMA M, SUZUKI T, NAKAJIMA S, et al. Direct importance estimation for covariate shift adaptation[J]. Annals of the Institute of Statistical Mathematics, 2008, 60(4): 699-746. 10.1007/s10463-008-0197-x | 
| 22 | MALMI E, SEVERYN A, ROTHE S. Unsupervised text style transfer with padded masked language models[EB/OL].[2021-06-28]. . 10.18653/v1/2020.emnlp-main.699 | 
| 23 | ZHOU J T, ZHANG H, JIN D, et al. Dual adversarial neural transfer for low‑resource named entity recognition[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2019: 3461-3471. 10.18653/v1/p19-1336 | 
| 24 | CAO P, CHEN Y, LIU K, et al. Adversarial transfer learning for Chinese named entity recognition with self‑attention mechanism[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2018: 182-192. 10.18653/v1/d18-1017 | 
| 25 | GRAVES A, FERNÁNDEZ S, SCHMIDHUBER J. Bidirectional LSTM networks for improved phoneme classification and recognition[C]// Proceedings of the 2005 International Conference on Artificial Neural Networks, LNTCS 3697. Berlin: Springer, 2005: 799-804. | 
| 26 | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre‑training of deep bidirectional transformers for language understanding. [EB/OL]. [2021-09-01]. . 10.18653/v1/n18-2 | 
| 27 | KINGMA D P, BA J AND. Adam: a method for stochastic optimization. [EB/OL]. [2021-06-08]. . | 
| [1] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. | 
| [2] | Yunchuan HUANG, Yongquan JIANG, Juntao HUANG, Yan YANG. Molecular toxicity prediction based on meta graph isomorphism network [J]. Journal of Computer Applications, 2024, 44(9): 2964-2969. | 
| [3] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. | 
| [4] | Xiyuan WANG, Zhancheng ZHANG, Shaokang XU, Baocheng ZHANG, Xiaoqing LUO, Fuyuan HU. Unsupervised cross-domain transfer network for 3D/2D registration in surgical navigation [J]. Journal of Computer Applications, 2024, 44(9): 2911-2918. | 
| [5] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. | 
| [6] | Yuhan LIU, Genlin JI, Hongping ZHANG. Video pedestrian anomaly detection method based on skeleton graph and mixed attention [J]. Journal of Computer Applications, 2024, 44(8): 2551-2557. | 
| [7] | Yanjie GU, Yingjun ZHANG, Xiaoqian LIU, Wei ZHOU, Wei SUN. Traffic flow forecasting via spatial-temporal multi-graph fusion [J]. Journal of Computer Applications, 2024, 44(8): 2618-2625. | 
| [8] | Qianhong SHI, Yan YANG, Yongquan JIANG, Xiaocao OUYANG, Wubo FAN, Qiang CHEN, Tao JIANG, Yuan LI. Multi-granularity abrupt change fitting network for air quality prediction [J]. Journal of Computer Applications, 2024, 44(8): 2643-2650. | 
| [9] | Zheng WU, Zhiyou CHENG, Zhentian WANG, Chuanjian WANG, Sheng WANG, Hui XU. Deep learning-based classification of head movement amplitude during patient anaesthesia resuscitation [J]. Journal of Computer Applications, 2024, 44(7): 2258-2263. | 
| [10] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. | 
| [11] | Zhi ZHANG, Xin LI, Naifu YE, Kaixi HU. DKP: defending against model stealing attacks based on dark knowledge protection [J]. Journal of Computer Applications, 2024, 44(7): 2080-2086. | 
| [12] | Yiqun ZHAO, Zhiyu ZHANG, Xue DONG. Anisotropic travel time computation method based on dense residual connection physical information neural networks [J]. Journal of Computer Applications, 2024, 44(7): 2310-2318. | 
| [13] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. | 
| [14] | Xun SUN, Ruifeng FENG, Yanru CHEN. Monocular 3D object detection method integrating depth and instance segmentation [J]. Journal of Computer Applications, 2024, 44(7): 2208-2215. | 
| [15] | Yajuan ZHAO, Fanjun MENG, Xingjian XU. Review of online education learner knowledge tracing [J]. Journal of Computer Applications, 2024, 44(6): 1683-1698. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||