Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (12): 3924-3930.DOI: 10.11772/j.issn.1001-9081.2021101778
• Frontier and comprehensive applications • Previous Articles Next Articles
Bingqi SHEN1,2, Zhiming ZHANG1(), Shaolong SHU1
Received:
2021-10-18
Revised:
2021-12-16
Accepted:
2021-12-23
Online:
2021-12-31
Published:
2022-12-10
Contact:
Zhiming ZHANG
About author:
SHEN Bingqi,born in 1999, M. S. candidate. His research interests include simultaneous localization and mapping, autonomous mobile robot.Supported by:
通讯作者:
张志明
作者简介:
申炳琦(1999—),男,河南安阳人,硕士研究生,CCF会员,主要研究方向:同步定位与地图构建、自主移动机器人基金资助:
CLC Number:
Bingqi SHEN, Zhiming ZHANG, Shaolong SHU. UWB-VIO integrated indoor positioning algorithm for mobile robots[J]. Journal of Computer Applications, 2022, 42(12): 3924-3930.
申炳琦, 张志明, 舒少龙. 移动机器人超宽带与视觉惯性里程计组合的室内定位算法[J]. 《计算机应用》唯一官方网站, 2022, 42(12): 3924-3930.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021101778
坐标轴 方向 | RMSE | MAX | ||||||
---|---|---|---|---|---|---|---|---|
UWB/m | VIO/m | UWB/VIO via ES-EKF/m | 性能提升/% | UWB/m | VIO/m | UWB/VIO via ES-EKF/m | 性能提升/% | |
总体 | 0.130 5 | 0.869 2 | 0.319 8 | -145.0 | 0.490 0 | 1.372 3 | 0.512 4 | -4.6 |
x方向 | 0.084 9 | 1.172 3 | 0.423 4 | -398.7 | 0.180 0 | 1.372 3 | 0.512 4 | -184.6 |
y方向 | 0.164 7 | 0.347 3 | 0.152 3 | 7.5 | 0.490 0 | 1.153 0 | 0.393 0 | 19.8 |
Tab.1 Error comparison for results of different positioning algorithms in obstacle-free small site
坐标轴 方向 | RMSE | MAX | ||||||
---|---|---|---|---|---|---|---|---|
UWB/m | VIO/m | UWB/VIO via ES-EKF/m | 性能提升/% | UWB/m | VIO/m | UWB/VIO via ES-EKF/m | 性能提升/% | |
总体 | 0.130 5 | 0.869 2 | 0.319 8 | -145.0 | 0.490 0 | 1.372 3 | 0.512 4 | -4.6 |
x方向 | 0.084 9 | 1.172 3 | 0.423 4 | -398.7 | 0.180 0 | 1.372 3 | 0.512 4 | -184.6 |
y方向 | 0.164 7 | 0.347 3 | 0.152 3 | 7.5 | 0.490 0 | 1.153 0 | 0.393 0 | 19.8 |
坐标轴 方向 | RMSE | MAX | ||||||
---|---|---|---|---|---|---|---|---|
UWB/m | VIO/m | UWB/VIO via ES-EKF/m | 性能提升/% | UWB/m | VIO/m | UWB/VIO via ES-EKF/m | 性能提升/% | |
总体 | 0.359 5 | 0.848 6 | 0.337 0 | 6.3 | 1.240 0 | 1.730 0 | 1.185 9 | 4.4 |
x方向 | 0.229 4 | 0.201 9 | 0.130 9 | 37.5 | 1.050 0 | 0.408 3 | 0.607 5 | -48.8 |
y方向 | 0.486 9 | 1.296 2 | 0.501 3 | -2.9 | 1.240 0 | 1.730 0 | 1.185 9 | 4.4 |
Tab. 2 Error comparison for results of different positioning algorithms in large site with obstacles
坐标轴 方向 | RMSE | MAX | ||||||
---|---|---|---|---|---|---|---|---|
UWB/m | VIO/m | UWB/VIO via ES-EKF/m | 性能提升/% | UWB/m | VIO/m | UWB/VIO via ES-EKF/m | 性能提升/% | |
总体 | 0.359 5 | 0.848 6 | 0.337 0 | 6.3 | 1.240 0 | 1.730 0 | 1.185 9 | 4.4 |
x方向 | 0.229 4 | 0.201 9 | 0.130 9 | 37.5 | 1.050 0 | 0.408 3 | 0.607 5 | -48.8 |
y方向 | 0.486 9 | 1.296 2 | 0.501 3 | -2.9 | 1.240 0 | 1.730 0 | 1.185 9 | 4.4 |
1 | CADENA C, CARLONE L, CARRILLO H, et al. Past, present, and future of simultaneous localization and mapping: toward the robust-perception age[J]. IEEE Transactions on Robotics, 2016, 32(6):1309-1332. 10.1109/tro.2016.2624754 |
2 | BRESSON G, ALSAYED Z, YU L, et al. Simultaneous localization and mapping: a survey of current trends in autonomous driving[J]. IEEE Transactions on Intelligent Vehicles, 2017, 2(3):194-220. 10.1109/tiv.2017.2749181 |
3 | 丁斗建,赵晓林,王长根,等. 基于视觉的机器人自主定位与障碍物检测方法[J]. 计算机应用, 2019, 39(6):1849-1854. 10.11772/j.issn.1001-9081.2018102187 |
DING D J, ZHAO X L, WANG C G, et al. Autonomous localization and obstacle detection method of robot based on vision[J]. Journal of Computer Applications, 2019, 39(6):1849-1854. 10.11772/j.issn.1001-9081.2018102187 | |
4 | 房德国,王伟,李自然,等. VIO-SLAM综述[J]. 电光与控制, 2020, 27(12):58-62, 100. 10.3969/j.issn.1671-637X.2020.12.013 |
FANG D G, WANG W, LI Z R, et al. VIO-SLAM review[J]. Electronics Optics and Control, 2020, 27(12):58-62, 100. 10.3969/j.issn.1671-637X.2020.12.013 | |
5 | MOURIKIS A I, ROUMELIOTIS S I. A multi-state constraint Kalman filter for vision-aided inertial navigation[C]// Proceedings of the 2007 International Conference on Robotics and Automation. Piscataway: IEEE, 2007: 3565-3572. 10.1109/robot.2007.364024 |
6 | LEUTENEGGER S, LYNEN S, BOSSE M, et al. Keyframe-based visual-inertial odometry using nonlinear optimization[J]. The International Journal of Robotics Research, 2015, 34(3):314-334. 10.1177/0278364914554813 |
7 | QIN T, LI P L, SHEN S J. VINS-Mono: a robust and versatile monocular visual-inertial state estimator[J]. IEEE Transactions on Robotics, 2018, 34(4): 1004-1020. 10.1109/tro.2018.2853729 |
8 | SUSKI W, BANERJEE S, HOOVER A. Using a map of measurement noise to improve UWB indoor position tracking[J]. IEEE Transactions on Instrumentation and Measurement, 2013, 62(8): 2228-2236. 10.1109/tim.2013.2256714 |
9 | PROROK A, MARTINOLI A. Accurate indoor localization with ultra-wideband using spatial models and collaboration[J]. The International Journal of Robotics Research, 2014, 33(4):547-568. 10.1177/0278364913500364 |
10 | HANSSENS B, PLETS D, TANGHE E, et al. An indoor variance-based localization technique utilizing the UWB estimation of geometrical propagation parameters[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(5): 2522-2533. 10.1109/tap.2018.2810340 |
11 | XU H, WANG L Q, ZHANG Y C, et al. Decentralized visual-inertial-UWB fusion for relative state estimation of aerial swarm[C]// Proceedings of the 2020 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2020: 8776-8782. 10.1109/icra40945.2020.9196944 |
12 | NGUYEN T H, NGUYEN T M, XIE L H. Range-focused fusion of camera-IMU-UWB for accurate and drift-reduced localization[J]. IEEE Robotics and Automation Letters, 2021, 6(2):1678-1685. 10.1109/lra.2021.3057838 |
13 | WANG C, ZHANG H D, NGUYEN T M, et al. Ultra-wideband aided fast localization and mapping system[C]// Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2017: 1602-1609. 10.1109/iros.2017.8205968 |
14 | NEIRYNCK D, LUK E, McLAUGHLIN M. An alternative double-sided two-way ranging method[C]// Proceedings of the 13th Workshop on Positioning, Navigation and Communications. Piscataway: IEEE, 2016:1-4. 10.1109/wpnc.2016.7822844 |
15 | JEON J, JUNG S, LEE E, et al. Run your visual-inertial odometry on NVIDIA Jetson: benchmark tests on a micro aerial vehicle[J]. IEEE Robotics and Automation Letters, 2021, 6(3):5332-5339. 10.1109/lra.2021.3075141 |
16 | MA S J, BAI X H, WANG Y L, et al. Robust stereo visual-inertial odometry using nonlinear optimization[J]. Sensors, 2019, 19(17): No.3747. 10.3390/s19173747 |
17 | SUN K, MOHTA K, PFROMMER B, et al. Robust stereo visual inertial odometry for fast autonomous flight[J]. IEEE Robotics and Automation Letters, 2018, 3(2): 965-972. 10.1109/lra.2018.2793349 |
18 | ZENG Q X, LIU D H, LV C D. UWB/binocular VO fusion algorithm based on adaptive Kalman filter[J]. Sensors, 2019, 19(18): No.4044. 10.3390/s19184044 |
19 | SHAUKAT N, ALI A, JAVED IQBAL M, et al. Multi-sensor fusion for underwater vehicle localization by augmentation of RBF neural network and error-state Kalman filter[J]. Sensors, 2021, 21(4): No.1149. 10.3390/s21041149 |
20 | MADYASTHA V, RAVINDRA V, MALLIKARJUNAN S. Extended-Kalman filter vs. error state Kalman filter for aircraft attitude estimation[C]// Proceedings of the 2011 AIAA Guidance, Navigation, and Control Conference. Reston, VA: AIAA, 2011: No.6615. 10.2514/6.2011-6615 |
[1] | Ying HU, Zhihuan CHEN. Trajectory tracking control of wheeled mobile robots under side-slip and slip [J]. Journal of Computer Applications, 2024, 44(7): 2294-2300. |
[2] | Tian MA, Runtao XI, Jiahao LYU, Yijie ZENG, Jiayi YANG, Jiehui ZHANG. Mobile robot 3D space path planning method based on deep reinforcement learning [J]. Journal of Computer Applications, 2024, 44(7): 2055-2064. |
[3] | Enbao QIAO, Xiangyang GAO, Jun CHENG. Self-recovery adaptive Monte Carlo localization algorithm based on support vector machine [J]. Journal of Computer Applications, 2024, 44(10): 3246-3251. |
[4] | Dongying ZHU, Yong ZHONG, Guanci YANG, Yang LI. Research progress on motion segmentation of visual localization and mapping in dynamic environment [J]. Journal of Computer Applications, 2023, 43(8): 2537-2545. |
[5] | Feiqiao SHAN, Zhaowei WANG, Yue SHEN. Time synchronization method based on precision time protocol in industrial wireless sensor networks [J]. Journal of Computer Applications, 2023, 43(7): 2255-2260. |
[6] | Li WANG, Shibin XUAN, Xuyang QIN, Ziwei LI. Multi-object tracking method based on dual-decoder Transformer [J]. Journal of Computer Applications, 2023, 43(6): 1919-1929. |
[7] | Yi WANG, Shenglei PEI, Yu WANG. Indoor positioning method of multi-fingerprint database based on channel state information and K-means-SVR [J]. Journal of Computer Applications, 2023, 43(5): 1636-1640. |
[8] | Yongdi LI, Caihong LI, Yaoyu ZHANG, Guosheng ZHANG. Mobile robot path planning based on improved SAC algorithm [J]. Journal of Computer Applications, 2023, 43(2): 654-660. |
[9] | Lu ZHANG, Jiapeng LIU, Dongmei TIAN. Application of Stacking-Bagging-Vote multi-source information fusion model for financial early warning [J]. Journal of Computer Applications, 2022, 42(1): 280-286. |
[10] | LI Kairong, LIU Shuang, HU Qianqian, TANG Yiyuan. Improved ant colony optimization algorithm for path planning based on turning angle constraint [J]. Journal of Computer Applications, 2021, 41(9): 2560-2568. |
[11] | LU Guoqing, SUN Hao. Two-dimensional mapping of swarm robot based on random walk [J]. Journal of Computer Applications, 2021, 41(7): 2121-2127. |
[12] | LUAN Jianing, ZHANG Wei, SUN Wei, ZHANG Ao, HAN Dong. High-accuracy localization algorithm based on fusion of two-dimensional code vision and laser lidar [J]. Journal of Computer Applications, 2021, 41(5): 1484-1491. |
[13] | Erchao LI, Kuankuan QI. Robot path planning based on B-spline curve and ant colony algorithm [J]. Journal of Computer Applications, 2021, 41(12): 3558-3564. |
[14] | ZHANG Jianming, SHI Yuanhao, XU Zhengyi, WEI Jianming. Adaptive UWB/PDR fusion positioning algorithm based on error prediction [J]. Journal of Computer Applications, 2020, 40(6): 1755-1762. |
[15] | LIU Ang, JIANG Jin, XU Kefeng. Robot path planning based on improved ant colony and pigeon inspired optimization algorithm [J]. Journal of Computer Applications, 2020, 40(11): 3366-3372. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||