Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (2): 536-544.DOI: 10.11772/j.issn.1001-9081.2022010015
• Multimedia computing and computer simulation • Previous Articles
Gang CHEN1, Yongwei LIAO1, Zhenguo YANG1, Wenying LIU1,2()
Received:
2022-01-07
Revised:
2022-04-30
Accepted:
2022-05-05
Online:
2022-05-24
Published:
2023-02-10
Contact:
Wenying LIU
About author:
CHEN Gang, born in 1977, Ph. D. candidate. His research interests include artificial intelligence, computer vision.Supported by:
通讯作者:
刘文印
作者简介:
陈刚(1977—),男,江西高安人,博士研究生,CCF会员,主要研究方向:人工智能、计算机视觉基金资助:
CLC Number:
Gang CHEN, Yongwei LIAO, Zhenguo YANG, Wenying LIU. Image inpainting algorithm of multi-scale generative adversarial network based on multi-feature fusion[J]. Journal of Computer Applications, 2023, 43(2): 536-544.
陈刚, 廖永为, 杨振国, 刘文印. 基于多特征融合的多尺度生成对抗网络图像修复算法[J]. 《计算机应用》唯一官方网站, 2023, 43(2): 536-544.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022010015
迭代轮次/104 | Lr | 迭代轮次/104 | Lr |
---|---|---|---|
0 | 0.167 | 90 | 0.009 |
30 | 0.082 | 120 | 0.006 |
60 | 0.082 |
Tab. 1 Partial values of reconstruction loss Lr
迭代轮次/104 | Lr | 迭代轮次/104 | Lr |
---|---|---|---|
0 | 0.167 | 90 | 0.009 |
30 | 0.082 | 120 | 0.006 |
60 | 0.082 |
算法 | PSNR/dB | SSIM | FID |
---|---|---|---|
CE[ | 24.980 | 0.8622 | 6.568 |
GMCNN[ | 26.123 | 0.9017 | 6.865 |
PENNet[ | 26.011 | 0.8923 | 6.857 |
PICNet[ | 26.425 | 0.9106 | 6.815 |
MGANII[ | 27.025 | 0.9236 | 7.926 |
本文算法 | 27.146 | 0.9317 | 4.203 |
Tab. 2 Comparison of inpainting effects of different algorithms
算法 | PSNR/dB | SSIM | FID |
---|---|---|---|
CE[ | 24.980 | 0.8622 | 6.568 |
GMCNN[ | 26.123 | 0.9017 | 6.865 |
PENNet[ | 26.011 | 0.8923 | 6.857 |
PICNet[ | 26.425 | 0.9106 | 6.815 |
MGANII[ | 27.025 | 0.9236 | 7.926 |
本文算法 | 27.146 | 0.9317 | 4.203 |
1 | LIU G L, REDA F A, SHIH K J, et al. Image inpainting for irregular holes using partial convolutions[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11215. Cham: Springer, 2018: 89-105. |
2 | CAI W W, WEI Z G. PiiGAN: generative adversarial networks for pluralistic image inpainting[J]. IEEE Access, 2020, 8: 48451-48463. 10.1109/ACCESS.2020.2979348 |
3 | XIONG W, YU J H, LIN Z, et al. Foreground-aware image inpainting[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 5833-5841. 10.1109/cvpr.2019.00599 |
4 | WIN K N, LI K L, CHEN J G, et al. Fingerprint classification and identification algorithms for criminal investigation: a survey[J]. Future Generation Computer Systems, 2020, 110: 758-771. 10.1016/j.future.2019.10.019 |
5 | HOU M L YANG S, HU Y G, et al. Novel method for virtual restoration of cultural relics with complex geometric structure based on multiscale spatial geometry[J]. ISPRS International Journal of Geo-Information, 2018, 7(9): No.353. 10.3390/ijgi7090353 |
6 | WU Q D, LI Y B, LIN Y. Medical image restoration method via multiple nonlocal prior constraints[J]. Journal of Intelligent and Fuzzy Systems, 2020, 38(1): 5-19. 10.3233/jifs-179375 |
7 | ZHANG M L, DESROSIERS C. High-quality image restoration using low-rank patch regularization and global structure sparsity[J]. IEEE Transactions on Image Processing, 2019, 28(2): 868-879. 10.1109/tip.2018.2874284 |
8 | BERTALMIO M, SAPIRO G CASELLES V, et al. Image inpainting[C]// Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 2000:417-424. 10.1145/344779.344972 |
9 | CRIMINISI A, PÉREZ P, TOYAMA K. Region filling and object removal by exemplar-based image inpainting[J]. IEEE Transactions on Image Processing, 2004, 13(9): 1200-1212. 10.1109/tip.2004.833105 |
10 | BOBIN J, STRARCK J L, FADILI J M, et al. Morphological component analysis: an adaptive thresholding strategy[J]. IEEE Transactions on Image Processing, 2007, 16(11): 2675-2681. 10.1109/tip.2007.907073 |
11 | PATHAK D, KRÄHENBÜHL P, DONAHUE J, et al. Context Encoders: feature learning by inpainting[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2536-2544. 10.1109/cvpr.2016.278 |
12 | IIZUKA S, SIMO-SERRA E, ISHIKAWA H. Globally and locally consistent image completion[J]. ACM Transactions on Graphics, 2017, 36(4): No.107. 10.1145/3072959.3073659 |
13 | WANG C Y, XU C, WANG C H, et al. Perceptual adversarial networks for image-to-image transformation[J]. IEEE Transactions on Image Processing, 2018, 27(8): 4066-4079. 10.1109/tip.2018.2836316 |
14 | SAGONG M C, SHIN Y G, KIM S W, et al. PEPSI: fast image inpainting with parallel decoding network[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 11352-11360. 10.1109/cvpr.2019.01162 |
15 | ZHENG C X, CHAM T J, CAI J F. Pluralistic image completion[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 1438-1447. 10.1109/cvpr.2019.00153 |
16 | 李克文,张文韬,邵明文,等. 多尺度生成式对抗网络图像修复算法[J]. 计算机科学与探索, 2020, 14(1):159-170. |
LI K W, ZHANG W T, SHAO M W, et al. Multi-scale generative adversarial networks image inpainting algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(1):159-170. | |
17 | 赵露露,沈玲,洪日昌. 图像修复研究进展综述[J]. 计算机科学, 2021, 48(3):14-26. 10.11896/jsjkx.210100048 |
ZHAO L L, SHEN L, HONG R C. Survey on image inpainting research progress[J]. Computer Science, 2021, 48(3):14-26. 10.11896/jsjkx.210100048 | |
18 | XIANG C Y, CAO Y J, DUAN P S, et al. An improved exemplar-based image inpainting algorithm[C]// Proceedings of the 9th International Conference on Computer Science and Education. Piscataway: IEEE, 2014:770-775. 10.1109/iccse.2014.6926566 |
19 | AHARON M, ELAD M, BRUCKSTEIN A. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322. 10.1109/tsp.2006.881199 |
20 | 冯浪,张玲,张晓龙. 基于扩张卷积的图像修复[J]. 计算机应用, 2020, 40(3):825-831. 10.11772/j.issn.1001-9081.2019081471 |
FENG L, ZHANG L, ZHANG X L. Image inapinting based on dilated convolution[J]. Journal of Computer Applications, 2020, 40(3):825-831. 10.11772/j.issn.1001-9081.2019081471 | |
21 | 刘波宁,翟东海. 基于双鉴别网络的生成对抗网络图像修复方法[J].计算机应用, 2018, 38(12):3557-3562, 3595. 10.11772/j.issn.1001-9081.2018051097 |
LIU B N, ZHAI D H. Image completion method of generative adversarial networks based on two discrimination networks[J]. Journal of Computer Applications, 2018, 38(12):3557-3562, 3595. 10.11772/j.issn.1001-9081.2018051097 | |
22 | LIU X M, ZHAI D M, ZHOU J T, et al. Sparsity based image error concealment via adaptive dual dictionary learning and regularization[J]. IEEE Transactions on Image Processing, 2017, 26(2): 782-796. 10.1109/tip.2016.2623481 |
23 | XIE J Y, XU L L, CHEN E H. Image denoising and inpainting with deep neural networks[C]// Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1. Red Hook, NY: Curran Associates Inc., 2012: 341-349. |
24 | WANG Y, TAO X, QI X J, et al. Image inpainting via generative multi-column convolutional neural networks[C]// Proceedings of the 32nd International Conference and Workshop on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2018: 329-338. 10.1109/icsp.2018.8652324 |
25 | ZENG Y H, FU J L, CHAO H Y, et al. Learning pyramid-context encoder network for high-quality image inpainting[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019:1486-1494. 10.1109/cvpr.2019.00158 |
26 | ZHENG H, LI J, GAO X B, et al. Progressive perception-oriented network for single image super-resolution[J]. Information Sciences, 2021, 546: 769-786. 10.1016/j.ins.2020.08.114 |
27 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10) [2022-03-26].. |
28 | JOHNSON J, ALAHI A, LI F F. Perceptual losses for real-time style transfer and super-resolution[C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9906. Cham: Springer, 2016: 694-711. |
29 | GATYS L, ECKEKR A S, BETHGE M. Texture synthesis using convolutional neural networks[M/OL]// CORTES C, LAWRENCE N, LEE D, et al. Advances in Neural Information Processing Systems 28 (NIPS 2015). [2022-03-26].. 10.1109/cvpr.2016.265 |
30 | GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein GANs[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 5769-5779. |
31 | SHEN W, LIU R J. Learning residual images for face attribute manipulation[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1225-1233. 10.1109/cvpr.2017.135 |
[1] | Yaling XUN, Linqing WANG, Jianghui CAI, Haifeng YANG. Partial periodic pattern incremental mining of time series data based on multi-scale [J]. Journal of Computer Applications, 2023, 43(2): 391-397. |
[2] | Ping WANG, Nan CHEN, Lei LU. Fall detection algorithm based on scene prior and attention guidance [J]. Journal of Computer Applications, 2023, 43(2): 529-535. |
[3] | Honggang YANG, Jiejie CHEN, Mengfei XU. Bilinear involution neural network for image classification of fundus diseases [J]. Journal of Computer Applications, 2023, 43(1): 259-264. |
[4] | Yuchao LYU, Xi JIANG, Yinghao XU, Xijun ZHU. Improved brachial plexus nerve segmentation method based on multi-scale feature fusion [J]. Journal of Computer Applications, 2023, 43(1): 273-279. |
[5] | Ziqi HU, Kai XIE, Chang WEN, Meiran LI, Jianbiao HE. Low dose CT image enhancement based on generative adversarial network [J]. Journal of Computer Applications, 2023, 43(1): 280-288. |
[6] | Kewen LI, Jiantao YANG, Zongchao HUANG. Improved YOLOv3 target detection based on boundary limit point features [J]. Journal of Computer Applications, 2023, 43(1): 81-87. |
[7] | Hongjun HENG, Tianbao XU. Attention sentiment analysis model based on multi-scale convolution and gating mechanism [J]. Journal of Computer Applications, 2022, 42(9): 2674-2679. |
[8] | Zanxia QIANG, Xianfu BAO. Residual attention deraining network based on convolutional long short-term memory [J]. Journal of Computer Applications, 2022, 42(9): 2858-2864. |
[9] | Yuyu MENG, Jing GUO. Link prediction algorithm based on information entropy improved PCA model [J]. Journal of Computer Applications, 2022, 42(9): 2823-2829. |
[10] | Haiyun WEI, Qianying ZHENG, Jinling YU. Motion blurred image restoration algorithm based on multi-scale network [J]. Journal of Computer Applications, 2022, 42(9): 2838-2844. |
[11] | Liying ZHANG, Chunjiang PANG, Xinying WANG, Guoliang LI. Multi-scale object detection algorithm based on improved YOLOv3 [J]. Journal of Computer Applications, 2022, 42(8): 2423-2431. |
[12] | Yinglü XUAN, Yuan WAN, Jiahui CHEN. Time series classification by LSTM based on multi-scale convolution and attention mechanism [J]. Journal of Computer Applications, 2022, 42(8): 2343-2352. |
[13] | Jiehang DENG, Wenquan GUO, Hanjie CHEN, Guosheng GU, Jingjian LIU, Yukun DU, Chao LIU, Xiaodong KANG, Jian ZHAO. Few-shot diatom detection combining multi-scale multi-head self-attention and online hard example mining [J]. Journal of Computer Applications, 2022, 42(8): 2593-2600. |
[14] | Ruijie YANG, Guilin ZHENG. Face liveness detection based on InceptionV3 and feature fusion [J]. Journal of Computer Applications, 2022, 42(7): 2037-2042. |
[15] | Wentao MAO, Guifang WU, Chao WU, Zhi DOU. Animation video generation model based on Chinese impressionistic style transfer [J]. Journal of Computer Applications, 2022, 42(7): 2162-2169. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||