1 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]// Proceedings of the 25th International Conference on Neural Information Processing Systems — Volume 1. Red Hook, NY: Curran Associates Inc., 2012: 1097-1105.
|
2 |
HINTON G E, KRIZHEVSKY A, WANG S D. Transforming auto-encoders[C]// Proceedings of the 2011 International Conference on Artificial Neural Networks, LNTCS 6791. Berlin: Springer, 2011: 44-51.
|
3 |
SABOUR S, FROSST N, HINTON G E. Dynamic routing between capsules[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 3859-3869.
|
4 |
HINTON G, SABOUR S, FROSST N. Matrix capsules with EM routing[EB/OL]. (2023-01-24) [2023-01-30]..
|
5 |
KOSIOREK A R, SABOUR S, TEH Y W, et al. Stacked capsule autoencoders[C/OL]// Proceedings of the 33rd Conference on Neural Information Processing System [2022-02-10]..
|
6 |
XIANG H L, HUANG Y S, LEE C H, et al. 3-D Res-CapsNet convolutional neural network on automated breast ultrasound tumor diagnosis[J]. European Journal of Radiology, 2021, 138: No.109608. 10.1016/j.ejrad.2021.109608
|
7 |
AFSHAR P, NADERKHANI F, OIKONOMOU A, et al. MIXCAPS: a capsule network-based mixture of experts for lung nodule malignancy prediction[J]. Pattern Recognition, 2021, 116: No.107942. 10.1016/j.patcog.2021.107942
|
8 |
PANIGRAHI S, DAS J, SWARNKAR T. Capsule network based analysis of histopathological images of oral squamous cell carcinoma[J]. Journal of King Saud University - Computer and Information Sciences, 2022, 34(7): 4546-4553. 10.1016/j.jksuci.2020.11.003
|
9 |
SUN G C, DING S F, SUN T F, et al. SA-CapsGAN: using Capsule Networks with embedded self-attention for Generative Adversarial Network[J]. Neurocomputing, 2021, 423: 399-406. 10.1016/j.neucom.2020.10.092
|
10 |
JAISWAL A, AbdALMAGEED W, WU Y, et al. CapsuleGAN: generative adversarial capsule network[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11131. Cham: Springer, 2019: 526-535.
|
11 |
JACOB I J. Performance evaluation of Caps-Net based multitask learning architecture for text classification[J]. Journal of Artificial Intelligence and Capsule Networks, 2020, 2(1): 1-10. 10.36548/jaicn.2020.1.001
|
12 |
WU Y J, LI J, WU J, et al. Siamese capsule networks with global and local features for text classification[J]. Neurocomputing, 2020, 390: 88-98. 10.1016/j.neucom.2020.01.064
|
13 |
LALONDE R, XU Z Y, IRMAKCI I, et al. Capsules for biomedical image segmentation[J]. Medical Image Analysis, 2021, 68: No.101889. 10.1016/j.media.2020.101889
|
14 |
DUARTE K, RAWAT Y S, SHAH M. VideoCapsuleNet: a simplified network for action detection[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2018: 7621-7630.
|
15 |
HUA Q, WEI L L, DONG C R, et al. Improved variational inference with dynamic routing flow[J]. International Journal of Machine Learning and Cybernetics, 2020, 11(2): 301-312. 10.1007/s13042-019-00974-x
|
16 |
WANG Y H, XIAO W D, TAN Z, et al. Caps-OWKG: a capsule network model for open-world knowledge graph[J]. International Journal of Machine Learning and Cybernetics, 2021, 12(6): 1627-1637. 10.1007/s13042-020-01259-4
|
17 |
XIONG Y, SU G P, YE S W, et al. Deeper capsule network for complex data[C]// Proceedings of the 2019 International Joint Conference on Neural Networks. Piscataway: IEEE, 2019: 1-8. 10.1109/ijcnn.2019.8852020
|
18 |
XIANG C Q, ZHANG L, TANG Y, et al. MS-CapsNet: a novel multi-scale capsule network[J]. IEEE Signal Processing Letters, 2018, 25(12): 1850-1854. 10.1109/lsp.2018.2873892
|
19 |
AMER M, MAUL T. Path capsule networks[J]. Neural Processing Letters, 2020, 52(1): 545-559. 10.1007/s11063-020-10273-0
|
20 |
ROSARIO V M DO, BORIN E, BRETERNITZ M. The multi-lane capsule network[J]. IEEE Signal Processing Letters, 2019, 26(7): 1006-1010. 10.1109/lsp.2019.2915661
|
21 |
TISSERA D, VITHANAGE K, WIJESINGHE R, et al. Feature-dependent cross-connections in multi-path neural networks[C]// Proceedings of the 25th International Conference on Pattern Recognition. Piscataway: IEEE, 2021: 4032-4039. 10.1109/icpr48806.2021.9413187
|
22 |
PHAYE S S R, SIKKA A, DHALL A, et al. Multi-level dense capsule networks[C]// Proceedings of the 2018 Asian Conference on Computer Vision, LNCS 11365. Cham: Springer, 2019: 577-592.
|
23 |
SUN G C, DING S F, SUN T F, et al. A novel dense capsule network based on dense capsule layers[J]. Applied Intelligence, 2022, 52(3): 3066-3076. 10.1007/s10489-021-02630-w
|
24 |
REN Q, SHANG S H, HE L H. Adaptive routing between capsules[EB/OL]. [2021-11-09].. 10.1109/iccvw.2019.00247
|
25 |
GUO X F. CapsNet-Pytorch: Pytorch implementation for NIPS2017 paper ‘Dynamic Routing Between Capsules’[EB/OL]. [2021-11-30]..
|
26 |
XI E, BING S, JIN Y. Capsule network performance on complex data[EB/OL]. [2021-10-14]..
|
27 |
NAIR P, DOSHI R, KESELJ S. Pushing the limits of capsule networks[EB/OL]. [2022-01-08]..
|
28 |
DELIÈGE A, CIOPPA A, VAN DROOGENBROECK M. HitNet: a neural network with capsules embedded in a Hit-or-Miss layer, extended with hybrid data augmentation and ghost capsules[EB/OL]. [2021-11-30].. 10.48550/arXiv.1806.06519
|
29 |
ZHAO Z, KLEINHANS A, SANDHU G, et al. Capsule networks with Max-Min normalization[EB/OL]. [2022-02-18]..
|