| 1 | BAGHERIAN M, SABETI E, WANG K, et al. Machine learning approaches and databases for prediction of drug-target interaction: a survey paper[J]. Briefings in Bioinformatics, 2021, 22(1): 247-269.  10.1093/bib/bbz157 | 
																													
																							| 2 | XIONG J C, XIONG Z P, CHEN K X, et al. Graph neural networks for automated de novo drug design[J]. Drug Discovery Today, 2021, 26(6): 1382-1393.  10.1016/j.drudis.2021.02.011 | 
																													
																							| 3 | LIU R Q, WEI L, ZHANG P. A deep learning framework for drug repurposing via emulating clinical trials on real-world patient data[J]. Nature Machine Intelligence, 2021, 3(1): 68-75.  10.1038/s42256-020-00276-w | 
																													
																							| 4 | TIAN Y J, ZHANG Y Q. A comprehensive survey on regularization strategies in machine learning[J]. Information Fusion, 2022, 80: 146-166.  10.1016/j.inffus.2021.11.005 | 
																													
																							| 5 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10) [2022-02-20].. | 
																													
																							| 6 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778.  10.1109/cvpr.2016.90 | 
																													
																							| 7 | DING K Z, XU Z, TONG H H, et al. Data augmentation for deep graph learning: a survey[J]. ACM SIGKDD Explorations Newsletter, 2022, 24(3): 61-77.  10.1145/3575637.3575646 | 
																													
																							| 8 | LIU S T, YING R, DONG H Z, et al. Local augmentation for graph neural networks[C]// Proceedings of the 39th International Conference on Machine Learning. New York: JMLR.org, 2022: 14054-14072. | 
																													
																							| 9 | VELIČKOVIĆ P, FEDUS W, HAMILTON W L, et al. Deep Graph Infomax[EB/OL]. (2018-12-21) [2022-07-05].. | 
																													
																							| 10 | FENG F L, HE X N, TANG J, et al. Graph adversarial training: dynamically regularizing based on graph structure[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(6): 2493-2504.  10.1109/tkde.2019.2957786 | 
																													
																							| 11 | XU Z, DU B X, TANG H H. Graph sanitation with application to node classification[C]// Proceedings of the 2022 ACM Web Conference. New York: ACM, 2022:1136-1147.  10.1145/3485447.3512180 | 
																													
																							| 12 | ZHENG C, ZONG B, CHENG W, et al. Robust graph representation learning via neural sparsification[C]// Proceedings of the 37th International Conference on Machine Learning. New York: JMLR.org, 2020: 11458-11468. | 
																													
																							| 13 | ZHAO T X, ZHANG X, WANG S H. GraphSMOTE: imbalanced node classification on graphs with graph neural networks[C]// Proceedings of the 14th ACM International Conference on Web Search and Data Mining. New York: ACM, 2021: 833-841.  10.1145/3437963.3441720 | 
																													
																							| 14 | KONDOR R I, LAFFERTY J. Diffusion kernels on graphs and other discrete structures[C]// Proceedings of the 19th International Conference on Machine Learning. San Francisco: Morgan Kaufmann Publishers Inc., 2002: 315-322. | 
																													
																							| 15 | JIAO Y Z, XIONG Y, ZHANG J W, et al. Sub-graph contrast for scalable self-supervised graph representation learning[C]// Proceedings of the 2020 IEEE International Conference on Data Mining. Piscataway: IEEE, 2020: 222-231.  10.1109/icdm50108.2020.00031 | 
																													
																							| 16 | QIU J Z, CHEN Q B, DONG Y X, et al. GCC: graph contrastive coding for graph neural network pre-training[C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 1150-1160.  10.1145/3394486.3403168 | 
																													
																							| 17 | YOU J X, YING R, REN X, et al. GraphRNN: generating realistic graphs with deep auto-regressive models[C]// Proceedings of the 35th International Conference on Machine Learning. New York: JMLR.org, 2018: 5708-5717. | 
																													
																							| 18 | BOJCHEVSKI A, SHCHUR O, ZÜGNER D, et al. NetGAN: generating graphs via random walks[C]// Proceedings of the 35th International Conference on Machine Learning. New York: JMLR.org, 2018: 610-619. | 
																													
																							| 19 | ZHANG H Y, CISSE M, DAUPHIN Y N, et al.  mixup: beyond empirical risk minimization[EB/OL]. (2018-04-27) [2022-07-05].. | 
																													
																							| 20 | ZHAO T, LIU Y Z, NEVES L, et al. Data augmentation for graph neural networks[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2021: 11015-11023.  10.1609/aaai.v35i12.17315 | 
																													
																							| 21 | ZHAO T, LIU G, WANG D H, et al. Counterfactual graph learning for link prediction[EB/OL]. (2022-06-03) [2022-07-05].. | 
																													
																							| 22 | 曹一珉,蔡磊,高敬阳. 基于生成对抗网络的基因数据生成方法[J]. 计算机应用, 2022, 42(3): 783-790. | 
																													
																							|  | CAO Y M, CAI L, GAO J Y. Gene data generation method based on generative adversarial network[J]. Journal of Computer Applications, 2022, 42(3): 783-790. | 
																													
																							| 23 | WU Z Q, RAMSUNDAR B, FEINBERG E N, et al. MoleculeNet: a benchmark for molecular machine learning[J]. Chemical Science, 2018, 9(2): 513-530.  10.1039/c7sc02664a | 
																													
																							| 24 | ZHANG X C, WU C K, YANG Z J, et al. MG-BERT: leveraging unsupervised atomic representation learning for molecular property prediction[J]. Briefings in Bioinformatics, 2021, 22(6): No.bbab152.  10.1093/bib/bbab152 |