[1] HENRIQUES J F,CASEIRO R,MARTINS P,et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(3):583-596. [2] 熊昌镇, 车满强, 王润玲. 基于稀疏卷积特征和相关滤波的实时视觉跟踪算法[J]. 计算机应用,2018,38(8):2175-2179,2333. (XIONG C Z,CHE M Q,WANG R L. Real-time visual tracking algorithm based on correlation filters and sparse convolutional features[J]. Journal of Computer Applications,2018,38(8):2175-2179,2333.) [3] 樊佳庆, 宋慧慧, 张开华. 通道稳定性加权补充学习的实时视觉跟踪算法[J]. 计算机应用,2018,38(6):1751-1754.(FAN J Q, SONG H H,ZHANG K H. Real-time visual tracking via channel stability weightedcomplementary learning[J]. Journal of Computer Applications,2018,38(6):1751-1754.) [4] 杨康, 宋慧慧, 张开华. 基于双重注意力孪生网络的实时视觉跟踪[J]. 计算机应用,2019,39(6):1652-1656.(YANG K,SONG H H,ZHANG K H. Real-time visual tracking based on dual attention Siamese network[J]. Journal of Computer Applications, 2019,39(6):1652-1656.) [5] BERTINETTO L,VALMADRE J,HENRIQUES J F,et al. Fullyconvolutional Siamese networks for object tracking[C]//Proceedings of the 2016 European Conference on Computer Vision, LNCS 9914. Cham:Springer,2016:850-865. [6] GUO Q,FENG W,ZHOU C,et al. Learning dynamic Siamese network for visual object tracking[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE,2017:1781-1789. [7] LI B,YAN J,WU W,et al. High performance visual tracking with siamese region proposal network[C]//Proceedings of the 2018 IEEE/CVF International Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:8971-8980. [8] REN S,HE K,GIRSHICK R,et al. Faster R-CNN:towards realtime object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017, 39(6):1137-1149. [9] ZHU Z,WANG Q,LI B,et al. Distractor-aware Siamese networks for visual object tracking[C]//Proceedings of the 2018 European Conference on Computer Vision,LNCS 11213. Cham:Springer, 2018:103-119. [10] HE A,LUO C,TIAN X,et al. A twofold Siamese network for real-time object tracking[C]//Proceedings of the 2018 IEEE/CVF International Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:4834-4843. [11] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2019-10-16]. https://arxiv.org/pdf/1409.1556.pdf. [12] KRIZHEVSKY A, SUTSKEVR I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Red Hook, NY:Curran Associates Inc.,2012:1097-1105. [13] CAO Y,XU J,LIN S,et al. GCNet:non-local networks meet squeeze-excitation networks and beyond[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop. Piscataway:IEEE,2019:1971-1980. [14] HU J,SHEN L,ALBANIE S,et al. Squeeze-and-excitation networks[EB/OL].[2017-06-05]. https://arxiv.org/pdf/1709.01507.pdf. [15] HUANG L,ZHAO X,HUANG K. GOT-10k:a large highdiversity benchmark for generic object tracking in the wild[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019(Early Access):1-1. [16] RUSSAKOVSKY O,DENG J,SU H,et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision,2015,115(3):211-252. [17] WU Y,LIM J,YANG M H. Object tracking benchmark[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015,37(9):1834-1848. [18] KRISTAN M,LEONARDIS A,MATAS J,et al. The visual object tracking VOT2018 challenge results[C]//Proceedings of the 2018 IEEE International Conference on Computer Vision Workshop. Piscataway:IEEE,2018:1949-1972. [19] DANELLJAN M, HÄGER G, KHAN F S, et al. Learning spatially regularized correlation filters for visual tracking[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway:IEEE,2015:4310-4318. [20] DANELLJAN M,HÄGER G,KHAN F S,et al. Accurate scale estimation for robust visual tracking[C]//Proceedings of the 2014 British Machine Vision Conference. Durham:BMVA Press, 2014:No. 038. [21] VALMADRE J,BERTINETTO L,HENRIQUES J,et al. End-toend representation learning for correlation filter based tracking[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:5000-5008. |