[1] 周新强, 欧阳小业, 龚志伟. 油气管道保护和安全管理问题及措施[J]. 化工设计通讯,2018,44(11):40. (ZHOU X Q, OUYANG X Y,GONG Z W. Oil and gas pipeline protection and safety management issues and measures[J]. Chemical Engineering Design Communications,2018,44(11):40.) [2] 黄谨益. 电力输电线路巡检中无人机的应用[J]. 电子技术与软件工程,2019(1):233. (HUANG J Y. Application of UAV in power transmission line inspection[J]. Electronic Technology and Software Engineering,2019(1):233.) [3] 王锐. 无人机在油田配电线路巡检中的应用[J]. 油气田地面工程,2018,37(12):73-75. (WANG R. Application of the unmanned aerial vehicle in the inspection of oilfield distribution lines[J]. Oil-Gasfield Surface Engineering, 2018, 37(12):73-75.) [4] 赵业隆, 吉长东, 杜全叶. 电力线巡检的无人机数字正射影像制作[J]. 测绘科学,2018,43(9):146-152. (ZHAO Y L,JI C D, DU Q Y. Digital orthophoto map making based on UAV electric power line inspection[J]. Science of Surveying and Mapping, 2018,43(9):146-152.) [5] 刘蕾, 赵清, 洪建伟, 等. 浅析无人机航拍技术在四川盆地天然气管道巡护中应用前景[J]. 天然气勘探与开发,2018,41(1):85-89.(LIU L,ZHAO Q,HONG J W,et al. Prospect on applying UAV aerial photography to gas pipeline patrol in Sichuan Basin[J]. Natural Gas Exploration and Development,2018,41(1):85-89.) [6] 李器宇, 张拯宁, 柳建斌, 等. 无人机遥感在油气管道巡检中的应用[J]. 红外,2014,35(3):37-42.(LI Q Y,ZHANG Z N,LIU J B,et al. Application of UAV remote sensing in oil and gas pipeline inspection[J]. Infrared,2014,35(3):37-42.) [7] WANG X,SHRIVASTAVA A,GUPTA A. A-Fast-RCNN:hard positive generation via adversary for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:3039-3048. [8] QUAN L,PEI D,WANG B,et al. Research on human target recognition algorithm of home service robot based on Fast-RCNN[C]//Proceedings of the 10th International Conference on Intelligent Computation Technology and Automation. Piscataway:IEEE,2017:369-373. [9] REN S,HE K,GIRSHICK R,et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017, 39(6):1137-1149. [10] REDMON J,DIVVALA S,GIRSHICK R,et al. You only look once:unified,real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:779-788. [11] REDMON J,FARHADI A. YOLO9000:better,faster,stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:6517-6525. [12] REDMON J, FARHADI A. YOLOv3:an incremental improvement[EB/OL].[2018-04-08]. https://arxiv.org/pdf/1804.02767.pdf. [13] LIU W,ANGUELOV D,ERHAN D,et al. SSD:single shot multibox detector[C]//Proceedings of the 2016 European Conference on Computer Vision,LNCS 9905. Cham:Springer, 2016:21-37. [14] FU C,LIU W,RANGA A,et al. DSSD:deconvolutional single shot detector[EB/OL].[2017-01-17]. https://arxiv.org/pdf/1701.06659.pdf. [15] PENG Y,ZHANG L,LIU S,et al. Dilated residual networks with symmetric skip connection for image denoising[J]. Neurocomputing,2019,345:67-76. [16] XIA G,BAI X,DING J,et al. DOTA:a large-scale dataset for object detection in aerial images[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:3974-3983. [17] WU Z,GAO Y,LI L,et al. Semantic segmentation of high-resolution remote sensing images using fully convolutional network with adaptive threshold[J]. Connection Science,2019,31(2):169-184. [18] KUANG P,MA T,CHEN Z,et al. Image super-resolution with densely connected convolutional networks[J]. Applied Intelligence,2019,49(1):125-136. [19] WU S,ZHONG S,LIU Y. Deep residual learning for image steganalysis[J]. Multimedia Tools and Applications,2018,77(9):10437-10453. [20] ZHANG Y,TIAN Y,KONG Y,et al. Residual dense network for image super-resolution[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:2472-2481. [21] VAN OPBROEK A,ACHTERBERG H C,VERNOOIJ M W,et al. Transfer learning for image segmentation by combining image weighting and kernel learning[J]. IEEE Transactions on Medical Imaging,2019,38(1):213-224. [22] YOSINSKI J,CLUNE J,BENGIO Y,et al. How transferable are features in deep neural networks?[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge:MIT Press,2014:3320-3328. |