Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (6): 1803-1810.DOI: 10.11772/j.issn.1001-9081.2022050665
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
Yubin GUO1,2, Xiang WEN1, Pan LIU1, Ximing LI1,2()
Received:
2022-05-08
Revised:
2022-08-09
Accepted:
2022-08-11
Online:
2023-06-08
Published:
2023-06-10
Contact:
Ximing LI
About author:
GUO Yubin, born in 1973, Ph. D., associate professor. Her research interests include database, big data, data mining, deep learning.Supported by:
通讯作者:
李西明
作者简介:
郭玉彬(1973—),女,山东高唐人,副教授,博士,主要研究方向:数据库、大数据、数据挖掘、深度学习基金资助:
CLC Number:
Yubin GUO, Xiang WEN, Pan LIU, Ximing LI. Cross-modal person re-identification relation network based on dual-stream structure[J]. Journal of Computer Applications, 2023, 43(6): 1803-1810.
郭玉彬, 文向, 刘攀, 李西明. 基于双流结构的跨模态行人重识别关系网络[J]. 《计算机应用》唯一官方网站, 2023, 43(6): 1803-1810.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022050665
方法 | 来源 | 全局搜索 | 室内搜索 | ||
---|---|---|---|---|---|
Rank1 | mAP | Rank1 | mAP | ||
TONE | AAAI2018 | 12.52 | 14.42 | — | — |
BDTR | IJCAI2018 | 17.01 | 19.66 | — | — |
JSIA | AAAI2020 | 38.10 | 36.90 | 43.80 | 52.90 |
AlignGAN | ICCV2019 | 42.40 | 40.70 | 45.90 | 54.30 |
CMSP | IJCV2020 | 43.56 | 44.98 | 48.62 | 57.50 |
AGW | TPAMI2021 | 47.50 | 47.65 | 54.17 | 62.97 |
XIV | AAAI2020 | 49.92 | 50.73 | — | — |
DDAG | ECCV2020 | 54.75 | 53.02 | 61.02 | 67.98 |
NFS | CVPR2021 | 56.91 | 55.45 | 62.79 | 69.79 |
CICL | AAAI2021 | 57.20 | 59.30 | 66.60 | 74.70 |
cm-SSFT | CVPR2020 | 61.60 | 63.20 | 70.50 | 72.60 |
GLMC | TNNLS2021 | 64.37 | 63.43 | 67.35 | 74.02 |
IVRNBDS | — | 70.13 | 65.33 | 70.36 | 73.15 |
Tab. 1 Performance comparison of IVRNBDS and other methods on SYSU-MM01 dataset
方法 | 来源 | 全局搜索 | 室内搜索 | ||
---|---|---|---|---|---|
Rank1 | mAP | Rank1 | mAP | ||
TONE | AAAI2018 | 12.52 | 14.42 | — | — |
BDTR | IJCAI2018 | 17.01 | 19.66 | — | — |
JSIA | AAAI2020 | 38.10 | 36.90 | 43.80 | 52.90 |
AlignGAN | ICCV2019 | 42.40 | 40.70 | 45.90 | 54.30 |
CMSP | IJCV2020 | 43.56 | 44.98 | 48.62 | 57.50 |
AGW | TPAMI2021 | 47.50 | 47.65 | 54.17 | 62.97 |
XIV | AAAI2020 | 49.92 | 50.73 | — | — |
DDAG | ECCV2020 | 54.75 | 53.02 | 61.02 | 67.98 |
NFS | CVPR2021 | 56.91 | 55.45 | 62.79 | 69.79 |
CICL | AAAI2021 | 57.20 | 59.30 | 66.60 | 74.70 |
cm-SSFT | CVPR2020 | 61.60 | 63.20 | 70.50 | 72.60 |
GLMC | TNNLS2021 | 64.37 | 63.43 | 67.35 | 74.02 |
IVRNBDS | — | 70.13 | 65.33 | 70.36 | 73.15 |
方法 | 来源 | 全局搜索 | 室内搜索 | ||
---|---|---|---|---|---|
Rank1 | mAP | Rank1 | mAP | ||
TONE | AAAI2018 | 16.87 | 14.92 | 13.86 | 16.98 |
BDTR | IJCAI2018 | 33.47 | 31.83 | 32.72 | 31.10 |
JSIA | AAAI2020 | 48.50 | 49.30 | 48.10 | 48.90 |
AlignGAN | ICCV2019 | 57.90 | 53.60 | 56.30 | 53.40 |
CMSP | IJCV2020 | 65.07 | 64.50 | — | — |
AGW | TPAMI2021 | 70.05 | 66.37 | — | — |
XIV | AAAI2020 | 62.21 | 60.18 | — | — |
DDAG | ECCV2020 | 69.34 | 63.46 | 68.06 | 61.80 |
NFS | CVPR2021 | 80.54 | 72.10 | 77.95 | 69.79 |
CICL | AAAI2021 | 78.80 | 69.40 | 77.90 | 69.40 |
cm-SSFT | CVPR2020 | 72.30 | 72.90 | 71.00 | 71.70 |
GLMC | TNNLS2021 | 91.84 | 81.42 | 91.12 | 81.06 |
IVRNBDS | — | 92.34 | 92.58 | 91.35 | 91.78 |
Tab. 2 Performance comparison of IVRNBDS and other methods on RegDB dataset
方法 | 来源 | 全局搜索 | 室内搜索 | ||
---|---|---|---|---|---|
Rank1 | mAP | Rank1 | mAP | ||
TONE | AAAI2018 | 16.87 | 14.92 | 13.86 | 16.98 |
BDTR | IJCAI2018 | 33.47 | 31.83 | 32.72 | 31.10 |
JSIA | AAAI2020 | 48.50 | 49.30 | 48.10 | 48.90 |
AlignGAN | ICCV2019 | 57.90 | 53.60 | 56.30 | 53.40 |
CMSP | IJCV2020 | 65.07 | 64.50 | — | — |
AGW | TPAMI2021 | 70.05 | 66.37 | — | — |
XIV | AAAI2020 | 62.21 | 60.18 | — | — |
DDAG | ECCV2020 | 69.34 | 63.46 | 68.06 | 61.80 |
NFS | CVPR2021 | 80.54 | 72.10 | 77.95 | 69.79 |
CICL | AAAI2021 | 78.80 | 69.40 | 77.90 | 69.40 |
cm-SSFT | CVPR2020 | 72.30 | 72.90 | 71.00 | 71.70 |
GLMC | TNNLS2021 | 91.84 | 81.42 | 91.12 | 81.06 |
IVRNBDS | — | 92.34 | 92.58 | 91.35 | 91.78 |
方法配置 | 全局搜索 | 室内搜索 | ||
---|---|---|---|---|
Rank-1 | mAP | Rank-1 | mAP | |
B | 47.50 | 47.65 | 54.17 | 62.97 |
B+ORRM | 62.68 | 57.51 | 62.41 | 67.17 |
B+GCRM | 62.00 | 59.44 | 67.37 | 70.14 |
B+HC_Tri Loss | 61.52 | 58.52 | 65.41 | 69.30 |
IVRNBDS | 70.13 | 65.33 | 70.36 | 73.15 |
Tab. 3 Results of ablation experiments on SYSU-MM01 dataset
方法配置 | 全局搜索 | 室内搜索 | ||
---|---|---|---|---|
Rank-1 | mAP | Rank-1 | mAP | |
B | 47.50 | 47.65 | 54.17 | 62.97 |
B+ORRM | 62.68 | 57.51 | 62.41 | 67.17 |
B+GCRM | 62.00 | 59.44 | 67.37 | 70.14 |
B+HC_Tri Loss | 61.52 | 58.52 | 65.41 | 69.30 |
IVRNBDS | 70.13 | 65.33 | 70.36 | 73.15 |
方法配置 | 全局搜索 | 室内搜索 | ||
---|---|---|---|---|
Rank-1 | mAP | Rank-1 | mAP | |
B | 70.05 | 66.37 | — | — |
B+ORRM | 88.93 | 89.94 | 87.06 | 88.80 |
B+GCRM | 86.94 | 88.16 | 85.35 | 87.05 |
B+HC_Tri Loss | 79.22 | 68.35 | 78.14 | 67.08 |
IVRNBDS | 92.34 | 92.58 | 91.35 | 91.78 |
Tab. 4 Results of ablation experiments on RegDB dataset
方法配置 | 全局搜索 | 室内搜索 | ||
---|---|---|---|---|
Rank-1 | mAP | Rank-1 | mAP | |
B | 70.05 | 66.37 | — | — |
B+ORRM | 88.93 | 89.94 | 87.06 | 88.80 |
B+GCRM | 86.94 | 88.16 | 85.35 | 87.05 |
B+HC_Tri Loss | 79.22 | 68.35 | 78.14 | 67.08 |
IVRNBDS | 92.34 | 92.58 | 91.35 | 91.78 |
方法 | 训练时间 |
---|---|
A+三元组损失函数 | 172.24 |
A+批量难样本三元组损失函数 | 235.36 |
IVRNBDS | 164.98 |
Tab. 5 Training time of different loss functions on SYSU-MM01 dataset
方法 | 训练时间 |
---|---|
A+三元组损失函数 | 172.24 |
A+批量难样本三元组损失函数 | 235.36 |
IVRNBDS | 164.98 |
方法 | 计算量/109 | 推理时间/ms |
---|---|---|
AWG | 10.81 | 4.49 |
DDAG | 12.93 | 4.58 |
IVRNBDS | 12.96 | 5.15 |
Tab. 6 Computational cost of different methods on SYSU-MM01 dataset
方法 | 计算量/109 | 推理时间/ms |
---|---|---|
AWG | 10.81 | 4.49 |
DDAG | 12.93 | 4.58 |
IVRNBDS | 12.96 | 5.15 |
1 | ZAJDEL W, ZIVKOVIC Z, KROSE B J A. Keeping track of humans: have I seen this person before? [C]// Proceedings of the 2005 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2005: 2081-2086. |
2 | GHEISSARI N, SEBASTIAN T B, HARTLEY R. Person reidentification using spatiotemporal appearance[C]// Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2006: 1528-1535. 10.1109/cvpr.2006.4 |
3 | WU A C, ZHENG W S, YU H X, et al. RGB-infrared cross-modality person re-identification[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 5390-5399. 10.1109/iccv.2017.575 |
4 | YE M, LAN X Y, LI J W, et al. Hierarchical discriminative learning for visible thermal person re-identification[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2018: 7501-7508. 10.1609/aaai.v32i1.12293 |
5 | SCHROFF F, KALENICHENKO D, PHILBIN J. FaceNet: a unified embedding for face recognition and clustering[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 815-823. 10.1109/cvpr.2015.7298682 |
6 | FENG Y J, CHEN F, JI Y M, et al. Efficient cross-modality graph reasoning for RGB-infrared person re-identification[J]. IEEE Signal Processing Letters, 2021, 28: 1425-1429. 10.1109/lsp.2021.3093865 |
7 | WANG G A, ZHANG T Z, YANG Y, et al. Cross-modality paired-images generation for RGB-infrared person re-identification[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2020: 12144-12151. 10.1609/aaai.v34i07.6894 |
8 | LIU H J, CHENG J, WANG W, et al. Enhancing the discriminative feature learning for visible-thermal cross-modality person re-identification [J]. Neurocomputing, 2020, 398: 11-19. 10.1016/j.neucom.2020.01.089 |
9 | YE M, SHEN J B, LIN G J, et al. Deep learning for person re-identification: a survey and outlook[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(6):2872-2893. 10.1109/tpami.2021.3054775 |
10 | LIU H J, TAN X H, ZHOU X C. Parameter sharing exploration and hetero-center triplet loss for visible-thermal person re-identification [J]. IEEE Transactions on Multimedia, 2021, 23: 4414-4425. 10.1109/tmm.2020.3042080 |
11 | NGUYEN D T, HONG H G, KIM K W, et al. Person recognition system based on a combination of body images from visible light and thermal cameras [J]. Sensors, 2017, 17(3): No.605. 10.3390/s17030605 |
12 | XIANG X Z, LV N, YU Z T, et al. Cross-modality person re-identification based on dual-path multi-branch network [J]. IEEE Sensors Journal, 2019, 19(23) :11706-11713. 10.1109/jsen.2019.2936916 |
13 | WANG G S, YUAN Y F, CHEN X, et al. Learning discriminative features with multiple granularities for person re-identification[C]// Proceedings of the 26th ACM International Conference on Multimedia. New York: ACM, 2018: 274-282. 10.1145/3240508.3240552 |
14 | LU Y, WU Y, LIU B, et al. Cross-modality person re-identification with shared-specific feature transfer[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020:13376-13386. 10.1109/cvpr42600.2020.01339 |
15 | ZHAO Y B, LIN J W, XUAN Q, et al. HPILN: a feature learning framework for cross-modality person re-identification[J]. IET Image Processing, 2019, 13(14) :2897-2904. 10.1049/iet-ipr.2019.0699 |
16 | ZHANG S Z, YANG Y F, WANG P, et al. Attend to the difference: cross-modality person re-identification via contrastive correlation[J]. IEEE Transactions on Image Processing, 2021, 30: 8861-8872. 10.1109/tip.2021.3120881 |
17 | YE M, WANG Z, LAN X Y, et al. Visible thermal person re-identification via dual-constrained top-ranking [C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2018: 1092-1099. 10.24963/ijcai.2018/152 |
18 | ZHU Y X, YANG Z, WANG L, et al. Hetero-center loss for cross-modality person re-identification[J]. Neurocomputing, 2020, 386: 97-109. 10.1016/j.neucom.2019.12.100 |
19 | HAO Y, WANG N N, LI J, et al. HSME: hypersphere manifold embedding for visible thermal person re-identification[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2019: 8385-8392. 10.1609/aaai.v33i01.33018385 |
20 | WANG Z X, WANG Z, ZHENG Y Q, et al. Learning to reduce dual-level discrepancy for infrared-visible person re-identification[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 618-626. 10.1109/cvpr.2019.00071 |
21 | WANG G A, ZHANG T Z, CHENG J, et al. RGB-infrared cross-modality person re-identification via joint pixel and feature alignment[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 3622-3631. 10.1109/iccv.2019.00372 |
22 | ZHANG Z Y, JIANG S, HUANG C Z T, et al. RGB-IR cross-modality person ReID based on teacher-student GAN model [J]. Pattern Recognition Letters, 2021, 150: 155-161. 10.1016/j.patrec.2021.07.006 |
23 | FAN X, LUO H, ZHANG C, et al. Cross-spectrum dual-subspace pairing for RGB-infrared cross-modality person re-identification[EB/OL]. (2020-02-29) [2022-02-22].. 10.24963/ijcai.2020/143 |
24 | CHOI S, LEE S, KIM Y, et al. Hi-CMD: hierarchical cross-modality disentanglement for visible-infrared person re-identification [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10254-10263. 10.1109/cvpr42600.2020.01027 |
25 | SUN Y F, ZHENG L, YANG Y, et al. Beyond part models: person retrieval with refined part pooling (and a strong convolutional baseline)[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11208. Cham: Springer, 2018: 501-518. |
26 | 袁铭阳,周长胜,黄宏博,等.卷积神经网络池化方法综述[J]. 软件工程与应用, 2020, 9(5): 360-372. |
YUAN M Y, ZHOU C S, HUANG H B, et al. Survey on convolutional neural network pooling methods [J]. Software Engineering and Applications, 2020, 9(5): 360-372. | |
27 | FU Y, WEI Y C, ZHOU Y Q, et al. Horizontal pyramid matching for person re-identification[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2019: 8295-8302. 10.1609/aaai.v33i01.33018295 |
28 | LI D G, WEI X, HONG X P, et al. Infrared-visible cross-modal person re-identification with an X modality [C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2020: 4610-4617. 10.1609/aaai.v34i04.5891 |
29 | YE M, SHEN J B, CRANDALL D J, et al. Dynamic dual-attentive aggregation learning for visible-infrared person re-identification [C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12362. Cham: Springer, 2020: 229-247. |
30 | ZHANG L Y, DU G D, LIU F, et al. Global-local multiple granularity learning for cross-modality visible-infrared person reidentification [J]. IEEE Transactions on Neural Networks and Learning Systems, 2021(Early Access): 1-11. 10.1109/tnnls.2021.3085978 |
31 | WU A C, ZHENG W S, GONG S G, et al. RGB-IR person re-identification by cross-modality similarity preservation[J]. International Journal of Computer Vision, 2020, 128(6): 1765-1785. 10.1007/s11263-019-01290-1 |
32 | ZHAO Z W, LIU B, CHU Q, et al. Joint color-irrelevant consistency learning and identity-aware modality adaptation for visible-infrared cross modality person re-identification[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2021: 3520-3528. 10.1609/aaai.v35i4.16466 |
33 | CHEN Y, WAN L, LI Z, et al. Neural feature search for RGB-infrared person re-identification [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 587-597. 10.1109/cvpr46437.2021.00065 |
34 | HERMANS A, BEYER L, LEIBE B. In defense of the triplet loss for person re-identification[EB/OL]. (2017-11-21) [2022-03-11].. 10.21203/rs.3.rs-1501673/v1 |
[1] | Jieru JIA, Jianchao YANG, Shuorui ZHANG, Tao YAN, Bin CHEN. Unsupervised person re-identification based on self-distilled vision Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2893-2902. |
[2] | Cui WANG, Miaolei DENG, Dexian ZHANG, Lei LI, Xiaoyan YANG. Review of end-to-end person search algorithms based on images [J]. Journal of Computer Applications, 2024, 44(8): 2544-2550. |
[3] | Yuwei DING, Hongbo SHI, Jie LI, Min LIANG. Image denoising network based on local and global feature decoupling [J]. Journal of Computer Applications, 2024, 44(8): 2571-2579. |
[4] | Jiaming HE, Jucheng YANG, Chao WU, Xiaoning YAN, Nenghua XU. Person re-identification method based on multi-modal graph convolutional neural network [J]. Journal of Computer Applications, 2023, 43(7): 2182-2189. |
[5] | Zhixiong ZHENG, Jianhua LIU, Shuihua SUN, Ge XU, Honghui LIN. Aspect-based sentiment analysis model fused with multi-window local information [J]. Journal of Computer Applications, 2023, 43(6): 1796-1802. |
[6] | Yingmao YAO, Xiaoyan JIANG. Video-based person re-identification method based on graph convolution network and self-attention graph pooling [J]. Journal of Computer Applications, 2023, 43(3): 728-735. |
[7] | Jie SUN, Shaoxin WU, Xuejun WANG, Jing HUA. Efficient person search algorithm and optimization with Sophon SC5+ chip architecture [J]. Journal of Computer Applications, 2023, 43(3): 744-751. |
[8] | Jianhua ZHONG, Chuangyi QIU, Jianshu CHAO, Ruicheng MING, Jianfeng ZHONG. Cloth-changing person re-identification model based on semantic-guided self-attention network [J]. Journal of Computer Applications, 2023, 43(12): 3719-3726. |
[9] | Feiyu LIAN, Liang ZHANG, Jiedong WANG, Yukang JIN, Yu CHAI. Outdoor scene point cloud segmentation model based on graph model and attention mechanism [J]. Journal of Computer Applications, 2023, 43(12): 3911-3917. |
[10] | Tianhao QIU, Shurong CHEN. EfficientNet based dual-branch multi-scale integrated learning for pedestrian re-identification [J]. Journal of Computer Applications, 2022, 42(7): 2065-2071. |
[11] | Daili CHEN, Guoliang XU. Cross-domain person re-identification method based on attention mechanism with learning intra-domain variance [J]. Journal of Computer Applications, 2022, 42(5): 1391-1397. |
[12] | Yuchang YIN, Hongyuan WANG, Li CHEN, Zundeng FENG, Yu XIAO. One-shot video-based person re-identification with multi-loss learning and joint metric [J]. Journal of Computer Applications, 2022, 42(3): 764-769. |
[13] | Dawei LI, Zhiyong ZENG. Cross-modal person re-identification model based on dynamic dual-attention mechanism [J]. Journal of Computer Applications, 2022, 42(10): 3200-3208. |
[14] | LIU Ziyan, ZHU Mingcheng, YUAN Lei, MA Shanshan, CHEN Lingzhouting. Video person re-identification based on non-local attention and multi-feature fusion [J]. Journal of Computer Applications, 2021, 41(2): 530-536. |
[15] | Yunpeng GONG, Zhiyong ZENG, Feng YE. Person re-identification method based on grayscale feature enhancement [J]. Journal of Computer Applications, 2021, 41(12): 3590-3595. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||