[1] 李幼蛟, 卓力, 张菁, 等. 行人再识别技术综述[J]. 自动化学报, 2018,44(9):1554-1568.(LI Y J,ZHUO L,ZHANG J,et al. A survey of person re-identification[J]. Acta Automatica Sinica, 2018,44(9):1554-1568.) [2] LIU H,JIE Z,JAYASHREE K,et al. Video-based person reidentification with accumulative motion context[J]. IEEE Transactions on Circuits and Systems for Video Technology,2018, 28(10):2788-2802. [3] 胡彬, 杨铖, 邵叶秦, 等. 基于视频的行人再识别[J]. 南京航空航天大学学报,2019,51(5):669-674.(HU B,YANG C,SHAO Y Q,et al. Video-based person re-identification[J]. Journal of Nanjing University of Aeronautics and Astronautics,2019,51(5):669-674.) [4] WU Y,LIN Y,DONG X,et al. Exploit the unknown gradually:one-shot video-based person re-identification by stepwise learning[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:5177-5186. [5] FU Y,WANG X,WEI Y,et al. STA:spatial-temporal attention for large-scale video-based person re-identification[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2019:8287-8294. [6] HERMANS A,BEYER L,LEIBE B. In defense of the triplet loss for person re-identification[EB/OL].[2020-04-12]. https://arxiv.org/pdf/1703.07737.pdf. [7] LIAO X, HE L, YANG Z, et al. Video-based person reidentification via 3D convolutional networks and non-local attention[C]//Proceedings of the 14th Asian Conference on Computer Vision,LNCS 11366. Cham:Springer:620-634. [8] LI J,ZHANG S,HUANG T. Multi-scale 3D convolution network for video based person re-identification[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2019:8618-8625. [9] 桑海峰, 王传正, 吕应宇, 等. 基于多信息流动卷积神经网络的行人再识别[J]. 电子学报,2019,47(2):351-357.(SANG H F, WANG C Z,LYU Y Y,et al. Person re-identification based on multi-information flow convolutional neural network[J]. Acta Electronica Sinica,2019,47(2):351-357.) [10] ZHENG L,BIE Z,SUN Y,et al. MARS:a video benchmark for large-scale person re-identification[C]//Proceedings of the 14th European Conference on Computer Vision,LNCS 9910. Cham:Springer,2016:868-884. [11] WU L,SHEN C,VAN DEN HENGEL A,et al. Deep recurrent convolutional networks for video-based person re-identification:an end-to-end approach[EB/OL].[2020-04-12]. https://arxiv.org/pdf/1606.01609v2.pdf. [12] YAN Y,NI B,SONG Z,et al. Person re-identification via recurrent feature aggregation[C]//Proceedings of the 14th European Conference on Computer Vision,LNCS 9910. Cham:Springer,2016:701-716. [13] CHUNG D,TAHBOUB K,DELP E J. A two stream Siamese convolutional neural network for person re-identification[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE,2017:1992-2000. [14] ZHANG Z,LAN C,ZENG W,et al. Multi-granularity referenceaided attentive feature aggregation for video-based person reidentification[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2020:10404-10413. [15] MATIYALI N,SHARMA G. Video person re-identification using learned clip similarity aggregation[C]//Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision. Piscataway:IEEE,2020:2655-2653. [16] WU Y, BOURAHLA O E F, LI X, et al. Adaptive graph representation learning for video person re-identification[J]. IEEE Transactions on Image Processing,2020,29:8821-8830. [17] LI J, ZHANG S, WANG J, et al. Global-local temporal representations for video person re-identification[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway:IEEE,2019:3957-3966. [18] HOU R,MA B,CHANG H,et al. VRSTC:occlusion-free video person re-identification[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2019:7176-7185. [19] WANG X,GIRSHICK R,GUPTA A,et al. Non-local neural networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:7794-7803. [20] IOFFE S,SZEGEDY C. Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on Machine New York:JMLR. org,2015:448-456. [21] WANG H,WANG Y,ZHOU Z,et al. CosFace:large margin cosine loss for deep face recognition[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:5265-5274. [22] HIRZER M, BELEZNAI C, ROTH P M, et al. Person reidentification by descriptive and discriminative classification[C]//Proceedings of the 17th Scandinavian Conference on Image Analysis,LNCS 6688. Berlin:Springer,2011:91-102. |