Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (3): 764-769.DOI: 10.11772/j.issn.1001-9081.2021040788
• 2021 CCF Conference on Artificial Intelligence (CCFAI 2021) • Previous Articles
Yuchang YIN1, Hongyuan WANG1(), Li CHEN1, Zundeng FENG1, Yu XIAO2
Received:
2021-05-17
Revised:
2021-06-03
Accepted:
2021-06-15
Online:
2021-11-09
Published:
2022-03-10
Contact:
Hongyuan WANG
About author:
YIN Yuchang, born in 1996, M. S. candidate. His research interests include computer vision.Supported by:
通讯作者:
王洪元
作者简介:
殷雨昌(1996—),男,江苏盐城人,硕士研究生,主要研究方向:计算机视觉基金资助:
CLC Number:
Yuchang YIN, Hongyuan WANG, Li CHEN, Zundeng FENG, Yu XIAO. One-shot video-based person re-identification with multi-loss learning and joint metric[J]. Journal of Computer Applications, 2022, 42(3): 764-769.
殷雨昌, 王洪元, 陈莉, 冯尊登, 肖宇. 基于单标注样本的多损失学习与联合度量视频行人重识别[J]. 《计算机应用》唯一官方网站, 2022, 42(3): 764-769.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021040788
方法 | MARS | DukeMTMC-VideoReID | |||||||
---|---|---|---|---|---|---|---|---|---|
rank-1 | rank-5 | rank-20 | mAP | rank-1 | rank-5 | rank-20 | mAP | ||
Baseline(one-shot)[ | 36.20 | 50.20 | 61.90 | 15.50 | 39.60 | 56.80 | 67.00 | 33.30 | |
DGM+IDE[ | 36.80 | 54.00 | 68.50 | 16.90 | 42.40 | 57.90 | 69.30 | 33.60 | |
Stepwise[ | 41.20 | 55.60 | 66.80 | 19.70 | 56.30 | 70.40 | 79.20 | 46.80 | |
EUG[ | 57.62 | 69.64 | 78.08 | 34.68 | 70.79 | 83.61 | 89.60 | 61.76 | |
62.67 | 74.94 | 82.57 | 42.45 | 72.79 | 84.18 | 91.45 | 63.23 | ||
BUC[ | 55.10 | 68.30 | — | 29.40 | 74.80 | 86.80 | — | 66.70 | |
LGF[ | 58.80 | 69.00 | 78.50 | 36.20 | 86.30 | 96.00 | 98.60 | 82.70 | |
SCLU[ | 61.97 | 76.52 | 84.34 | 41.47 | 72.79 | 84.19 | 91.03 | 62.99 | |
63.74 | 78.44 | 85.51 | 42.74 | 72.79 | 85.04 | 90.31 | 63.15 | ||
PL[ | 57.90 | 70.30 | 79.30 | 34.90 | 71.00 | 83.80 | 90.30 | 61.90 | |
62.80 | 75.20 | 83.80 | 42.60 | 72.90 | 84.30 | 91.40 | 63.30 | ||
MLL+JDM | 65.50 | 78.50 | 86.60 | 44.20 | 76.20 | 87.20 | 93.30 | 67.50 | |
68.50 | 80.80 | 88.60 | 47.80 | 76.50 | 88.70 | 93.20 | 68.70 |
Tab.1 Performance comparison of different methods on two large-scale datasets
方法 | MARS | DukeMTMC-VideoReID | |||||||
---|---|---|---|---|---|---|---|---|---|
rank-1 | rank-5 | rank-20 | mAP | rank-1 | rank-5 | rank-20 | mAP | ||
Baseline(one-shot)[ | 36.20 | 50.20 | 61.90 | 15.50 | 39.60 | 56.80 | 67.00 | 33.30 | |
DGM+IDE[ | 36.80 | 54.00 | 68.50 | 16.90 | 42.40 | 57.90 | 69.30 | 33.60 | |
Stepwise[ | 41.20 | 55.60 | 66.80 | 19.70 | 56.30 | 70.40 | 79.20 | 46.80 | |
EUG[ | 57.62 | 69.64 | 78.08 | 34.68 | 70.79 | 83.61 | 89.60 | 61.76 | |
62.67 | 74.94 | 82.57 | 42.45 | 72.79 | 84.18 | 91.45 | 63.23 | ||
BUC[ | 55.10 | 68.30 | — | 29.40 | 74.80 | 86.80 | — | 66.70 | |
LGF[ | 58.80 | 69.00 | 78.50 | 36.20 | 86.30 | 96.00 | 98.60 | 82.70 | |
SCLU[ | 61.97 | 76.52 | 84.34 | 41.47 | 72.79 | 84.19 | 91.03 | 62.99 | |
63.74 | 78.44 | 85.51 | 42.74 | 72.79 | 85.04 | 90.31 | 63.15 | ||
PL[ | 57.90 | 70.30 | 79.30 | 34.90 | 71.00 | 83.80 | 90.30 | 61.90 | |
62.80 | 75.20 | 83.80 | 42.60 | 72.90 | 84.30 | 91.40 | 63.30 | ||
MLL+JDM | 65.50 | 78.50 | 86.60 | 44.20 | 76.20 | 87.20 | 93.30 | 67.50 | |
68.50 | 80.80 | 88.60 | 47.80 | 76.50 | 88.70 | 93.20 | 68.70 |
方法 | MARS | DukeMTMC-VideoReID |
---|---|---|
PUL[ | 37.29 | 61.24 |
EUG[ | 36.40 | 43.78 |
EUG[ | 55.56 | 69.75 |
SCLU[ | 58.76 | 70.41 |
SCLU[ | 62.92 | 76.80 |
PL[ | 55.70 | 71.20 |
MLL+JDM | 66.30 | 76.80 |
Tab.2 Comparison of label estimation precision among different methods
方法 | MARS | DukeMTMC-VideoReID |
---|---|---|
PUL[ | 37.29 | 61.24 |
EUG[ | 36.40 | 43.78 |
EUG[ | 55.56 | 69.75 |
SCLU[ | 58.76 | 70.41 |
SCLU[ | 62.92 | 76.80 |
PL[ | 55.70 | 71.20 |
MLL+JDM | 66.30 | 76.80 |
方法 | MARS | DukeMTMC-VideoReID | 方法 | MARS | DukeMTMC-VideoReID | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
rank-1 | mAP | rank-1 | mAP | rank-1 | mAP | rank-1 | mAP | ||||
0.30 | PL[ | 44.5 | 22.1 | 66.1 | 56.3 | 0.10 | PL[ | 57.9 | 34.9 | 71.0 | 61.9 |
MLL | 49.2 | 25.9 | 68.7 | 59.9 | MLL | 61.9 | 39.5 | 73.4 | 65.2 | ||
JDM | 48.3 | 25.6 | 67.1 | 58.0 | JDM | 61.2 | 38.2 | 72.2 | 63.4 | ||
MLL+JDM | 48.5 | 26.8 | 69.5 | 60.2 | MLL+JDM | 65.5 | 44.2 | 76.2 | 67.5 | ||
0.20 | PL[ | 49.6 | 27.2 | 69.1 | 59.6 | 0.05 | PL[ | 62.8 | 42.6 | 72.9 | 63.3 |
MLL | 55.1 | 30.7 | 69.9 | 60.8 | MLL | 64.5 | 43.3 | 73.5 | 66.0 | ||
JDM | 54.7 | 31.0 | 70.1 | 60.5 | JDM | 63.8 | 42.6 | 73.1 | 64.0 | ||
MLL+JDM | 58.0 | 34.7 | 71.1 | 61.8 | MLL+JDM | 68.5 | 47.8 | 76.5 | 68.7 |
Tab.3 Ablation experiment results on MARS and DukeMTMC-VideoReID datasets with different p values
方法 | MARS | DukeMTMC-VideoReID | 方法 | MARS | DukeMTMC-VideoReID | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
rank-1 | mAP | rank-1 | mAP | rank-1 | mAP | rank-1 | mAP | ||||
0.30 | PL[ | 44.5 | 22.1 | 66.1 | 56.3 | 0.10 | PL[ | 57.9 | 34.9 | 71.0 | 61.9 |
MLL | 49.2 | 25.9 | 68.7 | 59.9 | MLL | 61.9 | 39.5 | 73.4 | 65.2 | ||
JDM | 48.3 | 25.6 | 67.1 | 58.0 | JDM | 61.2 | 38.2 | 72.2 | 63.4 | ||
MLL+JDM | 48.5 | 26.8 | 69.5 | 60.2 | MLL+JDM | 65.5 | 44.2 | 76.2 | 67.5 | ||
0.20 | PL[ | 49.6 | 27.2 | 69.1 | 59.6 | 0.05 | PL[ | 62.8 | 42.6 | 72.9 | 63.3 |
MLL | 55.1 | 30.7 | 69.9 | 60.8 | MLL | 64.5 | 43.3 | 73.5 | 66.0 | ||
JDM | 54.7 | 31.0 | 70.1 | 60.5 | JDM | 63.8 | 42.6 | 73.1 | 64.0 | ||
MLL+JDM | 58.0 | 34.7 | 71.1 | 61.8 | MLL+JDM | 68.5 | 47.8 | 76.5 | 68.7 |
rank-1 | rank-5 | rank-20 | mAP | |
---|---|---|---|---|
0.3 | 73.4 | 88.8 | 92.2 | 65.3 |
0.4 | 73.8 | 86.0 | 93.0 | 65.5 |
0.5 | 76.2 | 87.2 | 93.3 | 67.5 |
0.6 | 73.5 | 86.3 | 92.9 | 65.2 |
Tab.4 Performance comparison of JDM with different α on DukeMTMC-VideoReID
rank-1 | rank-5 | rank-20 | mAP | |
---|---|---|---|---|
0.3 | 73.4 | 88.8 | 92.2 | 65.3 |
0.4 | 73.8 | 86.0 | 93.0 | 65.5 |
0.5 | 76.2 | 87.2 | 93.3 | 67.5 |
0.6 | 73.5 | 86.3 | 92.9 | 65.2 |
rank-1 | rank-5 | rank-20 | mAP | |
---|---|---|---|---|
2 | 75.2 | 86.3 | 91.9 | 66.9 |
3 | 76.2 | 87.2 | 93.3 | 67.5 |
4 | 73.4 | 85.6 | 91.7 | 65.4 |
5 | 73.2 | 85.9 | 91.3 | 65.0 |
Tab.5 Performance comparison of JDM with different K on DukeMTMC-VideoReID
rank-1 | rank-5 | rank-20 | mAP | |
---|---|---|---|---|
2 | 75.2 | 86.3 | 91.9 | 66.9 |
3 | 76.2 | 87.2 | 93.3 | 67.5 |
4 | 73.4 | 85.6 | 91.7 | 65.4 |
5 | 73.2 | 85.9 | 91.3 | 65.0 |
1 | 戴臣超, 王洪元, 倪彤光,等. 基于深度卷积生成对抗网络和拓展近邻重排序的行人重识别[J]. 计算机研究与发展, 2019, 56(8):1632-1641. 10.7544/issn1000-1239.2019.20190195 |
DAI C C, WANG H Y, NI T G, et al. Person re-identification based on deep convolutional generative adversarial network and expanded neighbor reranking[J]. Journal of Computer Research and Development, 2019, 56(8): 1632-1641. 10.7544/issn1000-1239.2019.20190195 | |
2 | WANG H, DING Z, ZHANG J, et al. Person reidentification by semisupervised dictionary rectification learning with retraining module[J]. Journal of Electronic Imaging, 2018, 27(4): 043043. 10.1117/1.jei.27.4.043043 |
3 | GU X, CHANG H, MA B, et al. Appearance-preserving 3D convolution for video-based person re-identification[C]// Proceedings of the 16th European Conference on Computer Vision, LNCS 12347. Cham: Springer, 2020: 228-243. 10.1007/978-3-030-58536-5_14 |
4 | CHEN D, XU D, LI H, et al. Group consistent similarity learning via deep CRF for person re-identification[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2018: 8649-8658. 10.1109/cvpr.2018.00902 |
5 | ZHENG Z, ZHENG L, YANG Y. Unlabeled samples generated by gan improve the person re-identification baseline in vitro[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Washington, DC: IEEE Computer Society, 2017: 3754-3762. 10.1109/ICCV.2017.405 |
6 | LIU X, SONG M, TAO D, et al. Semi-supervised coupled dictionary learning for person re-identification[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2014: 3550-3557. 10.1109/cvpr.2014.454 |
7 | MA A J, LI P. Semi-supervised ranking for re-identification with few labeled image pairs[C]// Proceedings of the 2014 Asian Conference on Computer Vision, LNCS 9006. Cham: Springer, 2014: 598-613. |
8 | BAK S, CARR P. One-shot metric learning for person re-identification[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2017: 2990-2999. 10.1109/cvpr.2017.171 |
9 | WU Y, LIN Y, DONG X, et al. Exploit the unknown gradually: one-shot video-based person re-identification by stepwise learning[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2018: 5177-5186. 10.1109/cvpr.2018.00543 |
10 | WU Y, LIN Y, DONG X, et al. Progressive learning for person re-identification with one example[J]. IEEE Transactions on Image Processing, 2019, 28(6): 2872-2881. 10.1109/tip.2019.2891895 |
11 | SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2016: 2818-2826. 10.1109/cvpr.2016.308 |
12 | CHEN L, YANG H, GAO Z. Joint attentive spatial-temporal feature aggregation for video-based person re-identification[J]. IEEE Access, 2019, 7: 41230-41240. 10.1109/access.2019.2907274 |
13 | HOU R, MA B, CHANG H, et al. VRSTC: occlusion-free video person re-identification[C]// Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2019: 7183-7192. 10.1109/cvpr.2019.00735 |
14 | SUBRAMANIAM A, NAMBIAR A, MITTAL A. Co-segmentation inspired attention networks for video-based person re-identification[C]// Proceedings of the 2019 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2019: 562-572. 10.1109/iccv.2019.00065 |
15 | WU Y, BOURAHLA O E F, LI X, et al. Adaptive graph representation learning for video person re-identification[J]. IEEE Transactions on Image Processing, 2020, 29: 8821-8830. 10.1109/tip.2020.3001693 |
16 | YAN Y, QIN J, CHEN J, et al. Learning multi-granular hypergraphs for video-based person re-identification[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 2899-2908. 10.1109/cvpr42600.2020.00297 |
17 | YE M, MA A J, ZHENG L, et al. Dynamic label graph matching for unsupervised video re-identification[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Washington, DC: IEEE Computer Society, 2017: 5142-5150. 10.1109/iccv.2017.550 |
18 | XU T I, LI J, WU H, et al. Feature space regularization for person re-identification with one sample[C]// Proceedings of the IEEE 31st International Conference on Tools with Artificial Intelligence. Piscataway: IEEE, 2019: 1463-1470. 10.1109/ictai.2019.00208 |
19 | YIN J, LI B, WAN F, et al. A new data selection strategy for one-shot video-based person re-identification[C]// Proceedings of the 2019 IEEE International Conference on Image Processing. Piscataway: IEEE, 2019: 1227-1231. 10.1109/icip.2019.8803723 |
20 | ZHAO C, ZHANG Z, YAN J, et al. Local-global feature for video-based one-shot person re-identification[C]// Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2020: 3662-3666. 10.1109/icassp40776.2020.9053134 |
21 | LI H, XIAO J, SUN M, et al. Progressive sample mining and representation learning for one-shot person re-identification with adversarial samples [EB/OL]. [2021-05-10]. . 10.1016/j.patcog.2020.107614 |
22 | XIN X, WANG J, XIE R, et al. Semi-supervised person re-identification using multi-view clustering[J]. Pattern Recognition, 2019, 88: 285-297. 10.1016/j.patcog.2018.11.025 |
23 | LIU C T, LI Y J, CHIEN S Y, et al. Semantics-guided clustering with deep progressive learning for semi-supervised person re-identification [EB/OL]. [2021-05-10]. . 10.48550/arXiv.2010.01148 |
24 | ZHENG L, BIE Z, SUN Y, et al. MARS: a video benchmark for large-scale person re-identification[C]// Proceedings of the 2016 European Conference on Computer Vision. Cham: Springer, 2016: 868-884. 10.1007/978-3-319-46466-4_52 |
25 | LIU Z, WANG D, LU H. Stepwise metric promotion for unsupervised video person re-identification[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Washington, DC: IEEE Computer Society, 2017: 2429-2438. 10.1109/iccv.2017.266 |
26 | FAN H, ZHENG L, YAN C, et al. Unsupervised person re-identification: clustering and fine-tuning[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2018, 14(4): 1-18. 10.1145/3243316 |
27 | LIN Y, DONG X, ZHENG L, et al. A bottom-up clustering approach to unsupervised person re-identification[C]// Proceedings of the 2019 AAAI Conference on Artificial Intelligence. Menlo Park, CA: AAAI, 2019: 8738-8745. 10.1609/aaai.v33i01.33018738 |
[1] | Jie WU, Shitian ZHANG, Haibin XIE, Guang YANG. Semi-supervised knee abnormality classification based on multi-imaging center MRI data [J]. Journal of Computer Applications, 2022, 42(1): 316-324. |
[2] | MAO Mingze, CAO Ruihao, YAN Chungang. Semi-supervised classification algorithm based on weight diversity [J]. Journal of Computer Applications, 2021, 41(9): 2473-2480. |
[3] | ZHANG Shipeng, LI Yongzhong, DU Xiangtong. Intrusion detection model based on semi-supervised learning and three-way decision [J]. Journal of Computer Applications, 2021, 41(9): 2602-2608. |
[4] | CAO Yuhong, XU Hai, LIU Sun'ao, WANG Zixiao, LI Hongliang. Review of deep learning-based medical image segmentation [J]. Journal of Computer Applications, 2021, 41(8): 2273-2287. |
[5] | Zilong LI, Yong ZHOU, Rong BAO, Hongdong WANG. Deep distance metric learning method based on optimized triplet loss [J]. Journal of Computer Applications, 2021, 41(12): 3480-3484. |
[6] | ZHU Yuna, ZHANG Yutao, YAN Shaoge, FAN Yudan, CHEN Hantuo. Protocol identification approach based on semi-supervised subspace clustering [J]. Journal of Computer Applications, 2021, 41(10): 2900-2904. |
[7] | CHEN Li, WANG Hongyuan, ZHANG Yunpeng, CAO Liang, YIN Yuchang. Video-based person re-identification method by jointing evenly sampling-random erasing and global temporal feature pooling [J]. Journal of Computer Applications, 2021, 41(1): 164-169. |
[8] | LYU Yali, MIAO Junzhong, HU Weixin. Semi-supervised learning algorithm of graph based on label metric learning [J]. Journal of Computer Applications, 2020, 40(12): 3430-3436. |
[9] | CHENG Kai, WANG Yan, LIU Jianfei. Semi-supervised learning method for automatic nuclei segmentation using generative adversarial network [J]. Journal of Computer Applications, 2020, 40(10): 2917-2922. |
[10] | LIU Ying, LIANG Nannan, LI Daxiang, YANG Fanchao. Hyperspectral image unmixing algorithm based on spectral distance clustering [J]. Journal of Computer Applications, 2019, 39(9): 2541-2546. |
[11] | DENG Xuan, LIAO Kaiyang, ZHENG Yuanlin, YUAN Hui, LEI Hao, CHEN Bing. Person re-identification based on deep multi-view feature distance learning [J]. Journal of Computer Applications, 2019, 39(8): 2223-2229. |
[12] | CHEN Kejia, YANG Zeyu, LIU Zheng, LU Hao. Graph convolutional network model using neighborhood selection strategy [J]. Journal of Computer Applications, 2019, 39(12): 3415-3419. |
[13] | REN Fulong, CAO Peng, WAN Chao, ZHAO Dazhe. Grading of diabetic retinopathy based on cost-sensitive semi-supervised ensemble learning [J]. Journal of Computer Applications, 2018, 38(7): 2124-2129. |
[14] | WANG Qian, CHEN Yimin, DING Youdong. Vehicle re-identification algorithm based on bag of visual words in complicated environments [J]. Journal of Computer Applications, 2018, 38(5): 1299-1303. |
[15] | SUN Shengzi, WAN Yuan, ZENG Cheng. Semi-supervised adaptive multi-view embedding method for feature dimension reduction [J]. Journal of Computer Applications, 2018, 38(12): 3391-3398. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||