Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (5): 1527-1533.DOI: 10.11772/j.issn.1001-9081.2022050716
Special Issue: 网络空间安全
• Cyber security • Previous Articles Next Articles
Received:2022-05-20
															
							
																	Revised:2022-12-22
															
							
																	Accepted:2023-01-18
															
							
							
																	Online:2023-05-08
															
							
																	Published:2023-05-10
															
							
						Contact:
								Renchao QIN   
													About author:JIANG Ruilin, born in 1998, M. S. candidate. His research interests include cyberspace securitySupported by:通讯作者:
					覃仁超
							作者简介:蒋瑞林(1998—),男,陕西咸阳人,硕士研究生,CCF会员,主要研究方向:网络空间安全基金资助:CLC Number:
Ruilin JIANG, Renchao QIN. Multi-neural network malicious code detection model based on depthwise separable convolution[J]. Journal of Computer Applications, 2023, 43(5): 1527-1533.
蒋瑞林, 覃仁超. 基于深度可分离卷积的多神经网络恶意代码检测模型[J]. 《计算机应用》唯一官方网站, 2023, 43(5): 1527-1533.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022050716
| 算法 | 准确率 | 精度 | 召回率 | F1分数 | 
|---|---|---|---|---|
| LGBM | 92.04 | 84.38 | 86.55 | 84.87 | 
| RF | 92.11 | 83.99 | 86.43 | 84.61 | 
| DT | 89.48 | 79.45 | 83.31 | 80.08 | 
| LR | 77.90 | 70.80 | 64.23 | 77.91 | 
| SVM | 69.77 | 59.31 | 58.31 | 56.66 | 
Tab. 1 Comparison of texture feature classification experimental results
| 算法 | 准确率 | 精度 | 召回率 | F1分数 | 
|---|---|---|---|---|
| LGBM | 92.04 | 84.38 | 86.55 | 84.87 | 
| RF | 92.11 | 83.99 | 86.43 | 84.61 | 
| DT | 89.48 | 79.45 | 83.31 | 80.08 | 
| LR | 77.90 | 70.80 | 64.23 | 77.91 | 
| SVM | 69.77 | 59.31 | 58.31 | 56.66 | 
| 算法 | Training MSE | Test MSE | 
|---|---|---|
| LGBM | 0.11 | 4.70 | 
| RF | 0.00 | 7.84 | 
Tab. 2 LGBM and RF comparison in MSE
| 算法 | Training MSE | Test MSE | 
|---|---|---|
| LGBM | 0.11 | 4.70 | 
| RF | 0.00 | 7.84 | 
| 模型 | 准确率 | 精度 | 召回率 | F1分数 | 
|---|---|---|---|---|
| 本文模型 | 97.43 | 95.20 | 95.28 | 95.10 | 
| MobileNet-small | 97.13 | 94.00 | 94.90 | 94.30 | 
| ShuffleNet-SE | 97.00 | 94.73 | 94.20 | 94.00 | 
| Xception-SE | 89.74 | 81.82 | 84.71 | 80.00 | 
| ResNet50 | 91.24 | 85.30 | 85.60 | 85.08 | 
| AlexNet | 82.86 | 84.10 | 93.33 | 96.44 | 
| VGG16 | 95.14 | 90.46 | 91.07 | 90.62 | 
Tab. 3 Results comparison of hybrid dataset of MalVis + benign data
| 模型 | 准确率 | 精度 | 召回率 | F1分数 | 
|---|---|---|---|---|
| 本文模型 | 97.43 | 95.20 | 95.28 | 95.10 | 
| MobileNet-small | 97.13 | 94.00 | 94.90 | 94.30 | 
| ShuffleNet-SE | 97.00 | 94.73 | 94.20 | 94.00 | 
| Xception-SE | 89.74 | 81.82 | 84.71 | 80.00 | 
| ResNet50 | 91.24 | 85.30 | 85.60 | 85.08 | 
| AlexNet | 82.86 | 84.10 | 93.33 | 96.44 | 
| VGG16 | 95.14 | 90.46 | 91.07 | 90.62 | 
| 模型 | 参数量 | 内存占用/MB | 
|---|---|---|
| 本文模型 | 17 037 189 | 386 | 
| ResNet50 | 25 035 224 | 358 | 
| AlexNet | 56 970 649 | 229 | 
| VGG16 | 134 387 801 | 835 | 
Tab. 4 Model parameter quantity and training memory usage comparison
| 模型 | 参数量 | 内存占用/MB | 
|---|---|---|
| 本文模型 | 17 037 189 | 386 | 
| ResNet50 | 25 035 224 | 358 | 
| AlexNet | 56 970 649 | 229 | 
| VGG16 | 134 387 801 | 835 | 
| 模型 | 准确率 | 精度 | 召回率 | F1分数 | 
|---|---|---|---|---|
| 本文模型 | 99.31 | 98.51 | 98.10 | 98.26 | 
| MobileNet-small | 97.77 | 92.47 | 93.07 | 92.60 | 
| ShuffleNet-SE | 98.28 | 93.80 | 94.45 | 94.04 | 
| Xception-SE | 97.43 | 92.20 | 91.83 | 91.62 | 
| GLCM+SVM | 93.20 | 93.40 | 93.00 | — | 
| ResNet50 | 97.84 | 92.70 | 93.00 | 92.44 | 
| VGG16 | 98.01 | 93.12 | 93.73 | 93.33 | 
| AlexNet | 97.80 | 97.85 | 97.50 | 96.56 | 
| VGGNet | 96.16 | 96.10 | 96.53 | 96.36 | 
| MFF_CNN | 98.10 | 97.90 | 98.00 | 97.10 | 
| SPP_CNN | 97.10 | 96.80 | 97.10 | 97.00 | 
Tab. 5 Comparison of related work results on malimg dataset unit: %
| 模型 | 准确率 | 精度 | 召回率 | F1分数 | 
|---|---|---|---|---|
| 本文模型 | 99.31 | 98.51 | 98.10 | 98.26 | 
| MobileNet-small | 97.77 | 92.47 | 93.07 | 92.60 | 
| ShuffleNet-SE | 98.28 | 93.80 | 94.45 | 94.04 | 
| Xception-SE | 97.43 | 92.20 | 91.83 | 91.62 | 
| GLCM+SVM | 93.20 | 93.40 | 93.00 | — | 
| ResNet50 | 97.84 | 92.70 | 93.00 | 92.44 | 
| VGG16 | 98.01 | 93.12 | 93.73 | 93.33 | 
| AlexNet | 97.80 | 97.85 | 97.50 | 96.56 | 
| VGGNet | 96.16 | 96.10 | 96.53 | 96.36 | 
| MFF_CNN | 98.10 | 97.90 | 98.00 | 97.10 | 
| SPP_CNN | 97.10 | 96.80 | 97.10 | 97.00 | 
| 1 | 国家计算机网络应急技术处理协调中心(CNCERT/CC). 2021年上半年我国互联网网络安全监测数据分析报告[EB/OL]. [2022-03-20].. 10.1007/978-981-16-9229-1 | 
| National Computer Network Emergency Response Technical Team/Coordination Center of China (CNCERT/CC). First-half year cyberseurity report 2021 of China[EB/OL]. [2022-03-20].. 10.1007/978-981-16-9229-1 | |
| 2 | Kaspersky. IT threat evolution in Q3 2021. PC statistics[EB/OL]. (2021-11-26) [2022-03-20].. | 
| 3 | CUI Z H, XUE F, CAI X J, et al. Detection of malicious code variants based on deep learning[J]. IEEE Transactions on Industrial Informatics, 2018, 14(7): 3187-3196. 10.1109/tii.2018.2822680 | 
| 4 | ŞAHIN D Ö, KURAL O E, AKLEYLEK S, et al. New results on permission based static analysis for Android malware[C]// Proceedings of the 6th International Symposium on Digital Forensic and Security. Piscataway: IEEE, 2018: 1-4. 10.1109/isdfs.2018.8355377 | 
| 5 | LU T L, HOU S. A two-layered malware detection model based on permission for Android[C]// Proceedings of the 2018 IEEE International Conference on Computer and Communication Engineering Technology. Piscataway: IEEE, 2018: 239-243. 10.1109/ccet.2018.8542215 | 
| 6 | DU J R, CHEN H J, ZHONG W J, et al. A dynamic and static combined android malicious code detection model based on SVM[C]// Proceedings of the 5th International Conference on Systems and Informatics. Piscataway: IEEE, 2018: 801-806. 10.1109/icsai.2018.8599356 | 
| 7 | 张东,张尧,刘刚,等. 基于机器学习算法的主机恶意代码检测技术研究[J]. 网络与信息安全学报, 2017, 3(7):25-32. 10.11959/j.issn.2096-109x.2017.00179 | 
| ZHANG D, ZHANG Y, LIU G, et al. Research on host malcode detection using machine learning[J]. Chinese Journal of Network and Information Security, 2017, 3(7): 25-32. 10.11959/j.issn.2096-109x.2017.00179 | |
| 8 | 王宁,王丹,陈怡西,等. 基于系统调用的智能终端恶意软件检测框架[J]. 计算机工程与设计, 2020, 41(6):1540-1546. | 
| WANG N, WANG D, CHEN Y X, et al. Detection framework for intelligent terminal malware based on system call[J]. Computer Engineering and Design, 2020, 41(6):1540-1546. | |
| 9 | WEN Q K, CHOW K P. CNN based zero-day malware detection using small binary segments[J]. Forensic Science International: Digital Investigation, 2021, 38(S): No.301128. 10.1016/j.fsidi.2021.301128 | 
| 10 | LIN Q G, LI N, QI Q, et al. Using API call sequences for IoT malware classification based on convolutional neural networks[J]. International Journal of Software Engineering and Knowledge Engineering, 2021, 31(4):587-612. 10.1142/s021819402140009x | 
| 11 | XU Z W, REN K R, QIN S C, et al. CDGDroid: Android malware detection based on deep learning using CFG and DFG[C]// Proceedings of the 2018 International Conference on Formal Engineering Methods, LNCS 11232. Berlin: Springer, 2018: 177-193. | 
| 12 | BAKOUR K, ÜNVER H M. DeepVisDroid: android malware detection by hybridizing image-based features with deep learning techniques[J]. Neural Computing and Applications, 2021, 33(18): 11499-11516. 10.1007/s00521-021-05816-y | 
| 13 | 王国栋,芦天亮,尹浩然,等. 基于CNN-BiLSTM的恶意代码家族检测技术[J]. 计算机工程与应用, 2020, 56(24):72-77. 10.3778/j.issn.1002-8331.1911-0001 | 
| WANG G D, LU T L, YIN H R, et al. Malicious code family detection technology based on CNN-BiLSTM[J]. Computer Engineering and Applications, 2020, 56(24):72-77. 10.3778/j.issn.1002-8331.1911-0001 | |
| 14 | ČEPONIS D, GORANIN N. Investigation of dual-flow deep learning models LSTM-FCN and GRU-FCN efficiency against single-flow CNN models for the host-based intrusion and malware detection task on univariate times series data[J]. Applied Sciences, 2020, 10(7): 2373. 10.3390/app10072373 | 
| 15 | LAD S S, ADAMUTHE A C. Malware classification with improved convolutional neural network model[J]. International Journal of Computer Network and Information Security, 2020, 12(6):30-43. 10.5815/ijcnis.2020.06.03 | 
| 16 | CUI Z H, DU L, WANG P H, et al. Malicious code detection based on CNNs and multi-objective algorithm[J]. Journal of Parallel and Distributed Computing, 2019, 129: 50-58. 10.1016/j.jpdc.2019.03.010 | 
| 17 | 李善玺. 基于机器学习的未知恶意代码自优化实时检测技术研究[D]. 兰州:兰州大学, 2021: 7-33. 10.24272/j.issn.2095-8137.2022.4.dwxyj202204008 | 
| LI S X. Research on self-optimizing real-time detection technology of unknown malicious code based on machine learning[D]. Lanzhou: Lanzhou University, 2021: 7-33. 10.24272/j.issn.2095-8137.2022.4.dwxyj202204008 | |
| 18 | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141. 10.1109/cvpr.2018.00745 | 
| 19 | HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 1314-1324. 10.1109/iccv.2019.00140 | 
| 20 | MA N N, ZHANG X Y, ZHENG H T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11218. Cham: Springer, 2018: 122-138. | 
| 21 | CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1800-1807. 10.1109/cvpr.2017.195 | 
| 22 | 高振宇,杨晓梅,龚剑明,等. 图像复杂度描述方法研究[J]. 中国图象图形学报, 2010, 15(1):129-135. 10.11834/jig.20100121 | 
| GAO Z Y, YANG X M, GONG J M, et al. Research on image complexity description methods[J]. Journal of Image and Graphics, 2010, 15(1):129-135. 10.11834/jig.20100121 | |
| 23 | 蒋考林,白玮,张磊,等. 基于多通道图像深度学习的恶意代码检测[J]. 计算机应用, 2021, 41(4):1142-1147. 10.11772/j.issn.1001-9081.2020081224 | 
| JIANG K L, BAI W, ZHANG L, et al. Malicious code detection based on multi-channel image deep learning[J]. Journal of Computer Applications, 2021, 41(4): 1142-1147. 10.11772/j.issn.1001-9081.2020081224 | |
| 24 | 王博,蔡弘昊,苏旸. 基于VGGNet的恶意代码变种分类[J]. 计算机应用, 2020, 40(1):162-167. 10.11772/j.issn.1001-9081.2019050953 | 
| WANG B, CAI H H, SU Y. Classification of malicious code variants based on VGGNet[J]. Journal of Computer Applications, 2020, 40(1): 162-167. 10.11772/j.issn.1001-9081.2019050953 | |
| 25 | 梁军淼. 基于卷积神经网络的恶意代码变种检测技术研究[D]. 北京:北京工业大学, 2021: 37-51. | 
| LIANG J M. Research on malware variant detection technology based on convolutional neural network[D]. Beijing: Beijing University of Technology, 2021: 37-51. | |
| 26 | 刘薇. 基于卷积神经网络的恶意代码灰度图像分类研究[D]. 北京:北京交通大学, 2021: 17-38. | 
| LIU W. Research on grayscale malware image classification based on convolutional neural network[D]. Beijing: Beijing Jiaotong University, 2021: 17-38. | 
| [1] | Xingyao YANG, Yu CHEN, Jiong YU, Zulian ZHANG, Jiaying CHEN, Dongxiao WANG. Recommendation model combining self-features and contrastive learning [J]. Journal of Computer Applications, 2024, 44(9): 2704-2710. | 
| [2] | Na WANG, Lin JIANG, Yuancheng LI, Yun ZHU. Optimization of tensor virtual machine operator fusion based on graph rewriting and fusion exploration [J]. Journal of Computer Applications, 2024, 44(9): 2802-2809. | 
| [3] | Yun LI, Fuyou WANG, Peiguang JING, Su WANG, Ao XIAO. Uncertainty-based frame associated short video event detection method [J]. Journal of Computer Applications, 2024, 44(9): 2903-2910. | 
| [4] | Tingjie TANG, Jiajin HUANG, Jin QIN. Session-based recommendation with graph auxiliary learning [J]. Journal of Computer Applications, 2024, 44(9): 2711-2718. | 
| [5] | Rui ZHANG, Pengyun ZHANG, Meirong GAO. Self-optimized dual-modal multi-channel non-deep vestibular schwannoma recognition model [J]. Journal of Computer Applications, 2024, 44(9): 2975-2982. | 
| [6] | Jinjin LI, Guoming SANG, Yijia ZHANG. Multi-domain fake news detection model enhanced by APK-CNN and Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2674-2682. | 
| [7] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. | 
| [8] | Hang YANG, Wanggen LI, Gensheng ZHANG, Zhige WANG, Xin KAI. Multi-layer information interactive fusion algorithm based on graph neural network for session-based recommendation [J]. Journal of Computer Applications, 2024, 44(9): 2719-2725. | 
| [9] | Guanglei YAO, Juxia XIONG, Guowu YANG. Flower pollination algorithm based on neural network optimization [J]. Journal of Computer Applications, 2024, 44(9): 2829-2837. | 
| [10] | Ying HUANG, Jiayu YANG, Jiahao JIN, Bangrui WAN. Siamese mixed information fusion algorithm for RGBT tracking [J]. Journal of Computer Applications, 2024, 44(9): 2878-2885. | 
| [11] | Yu DU, Yan ZHU. Constructing pre-trained dynamic graph neural network to predict disappearance of academic cooperation behavior [J]. Journal of Computer Applications, 2024, 44(9): 2726-2731. | 
| [12] | Yubo ZHAO, Liping ZHANG, Sheng YAN, Min HOU, Mao GAO. Relation extraction between discipline knowledge entities based on improved piecewise convolutional neural network and knowledge distillation [J]. Journal of Computer Applications, 2024, 44(8): 2421-2429. | 
| [13] | Zheyuan SHEN, Keke YANG, Jing LI. Personalized federated learning method based on dual stream neural network [J]. Journal of Computer Applications, 2024, 44(8): 2319-2325. | 
| [14] | Hong CHEN, Bing QI, Haibo JIN, Cong WU, Li’ang ZHANG. Class-imbalanced traffic abnormal detection based on 1D-CNN and BiGRU [J]. Journal of Computer Applications, 2024, 44(8): 2493-2499. | 
| [15] | Ying YANG, Xiaoyan HAO, Dan YU, Yao MA, Yongle CHEN. Graph data generation approach for graph neural network model extraction attacks [J]. Journal of Computer Applications, 2024, 44(8): 2483-2492. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||
