Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (8): 2471-2476.DOI: 10.11772/j.issn.1001-9081.2022071030
Special Issue: 网络空间安全
• Cyber security • Previous Articles Next Articles
Xiang GUO, Wengang JIANG(), Yuhang WANG
Received:
2022-07-14
Revised:
2022-11-17
Accepted:
2022-11-21
Online:
2023-01-15
Published:
2023-08-10
Contact:
Wengang JIANG
About author:
GUO Xiang, born in 1997, M. S. candidate. His research interests include multimedia and information security, deep learning.Supported by:
通讯作者:
姜文刚
作者简介:
郭祥(1997—),男,安徽六安人,硕士研究生,主要研究方向:多媒体与信息安全、深度学习基金资助:
CLC Number:
Xiang GUO, Wengang JIANG, Yuhang WANG. Encrypted traffic classification method based on improved Inception-ResNet[J]. Journal of Computer Applications, 2023, 43(8): 2471-2476.
郭祥, 姜文刚, 王宇航. 基于改进Inception-ResNet的加密流量分类方法[J]. 《计算机应用》唯一官方网站, 2023, 43(8): 2471-2476.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022071030
场景 | 分类 | 均值 | 标准差 | ||||
---|---|---|---|---|---|---|---|
P | R | F1 | P | R | F1 | ||
场景1 | 2分类 | 100.00 | 100.00 | 100.00 | 0.00 | 0.00 | 0.00 |
加密6分类 | 94.21 | 92.53 | 93.31 | 0.12 | 0.07 | 0.09 | |
非加密6分类 | 98.28 | 98.55 | 98.39 | 0.06 | 0.06 | 0.05 | |
场景2 | 12分类 | 95.25 | 95.25 | 95.26 | 0.05 | 0.06 | 0.04 |
Tab.1 Experimental results of the proposed model in two types of experimental scenarios
场景 | 分类 | 均值 | 标准差 | ||||
---|---|---|---|---|---|---|---|
P | R | F1 | P | R | F1 | ||
场景1 | 2分类 | 100.00 | 100.00 | 100.00 | 0.00 | 0.00 | 0.00 |
加密6分类 | 94.21 | 92.53 | 93.31 | 0.12 | 0.07 | 0.09 | |
非加密6分类 | 98.28 | 98.55 | 98.39 | 0.06 | 0.06 | 0.05 | |
场景2 | 12分类 | 95.25 | 95.25 | 95.26 | 0.05 | 0.06 | 0.04 |
候选结构 | 卷积核尺寸 | 特征通道数 | 总体精度/% | |
---|---|---|---|---|
平均池化 | 最大池化 | |||
1 | 3×3 | 16 | 91.21 | 91.37 |
2 | 3×3 | 32 | 92.50 | 92.63 |
3 | 3×3 | 64 | 91.47 | 91.63 |
4 | 5×5 | 16 | 90.31 | 90.37 |
5 | 5×5 | 32 | 91.51 | 91.56 |
6 | 5×5 | 64 | 91.62 | 91.70 |
Tab. 2 Experimental comparison of residual blocks with different structures
候选结构 | 卷积核尺寸 | 特征通道数 | 总体精度/% | |
---|---|---|---|---|
平均池化 | 最大池化 | |||
1 | 3×3 | 16 | 91.21 | 91.37 |
2 | 3×3 | 32 | 92.50 | 92.63 |
3 | 3×3 | 64 | 91.47 | 91.63 |
4 | 5×5 | 16 | 90.31 | 90.37 |
5 | 5×5 | 32 | 91.51 | 91.56 |
6 | 5×5 | 64 | 91.62 | 91.70 |
残差块数量 | 精确率 | 残差块数量 | 精确率 |
---|---|---|---|
1 | 84.43 | 3 | 94.12 |
2 | 91.67 | 4 | 94.12 |
Tab. 3 Influence of number of residual blocks on precision
残差块数量 | 精确率 | 残差块数量 | 精确率 |
---|---|---|---|
1 | 84.43 | 3 | 94.12 |
2 | 91.67 | 4 | 94.12 |
分类器 | 指标 | P | R | F1 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
C4.5 | 1D-CNN | 本文模型 | C4.5 | 1D-CNN | 本文模型 | C4.5 | 1D-CNN | 本文模型 | ||
2分类 | 均值 | 89.80 | 99.90 | 100.00 | 90.49 | 99.90 | 100.00 | 90.12 | 99.92 | 100.00 |
标准差 | 0.05 | 0.05 | 0.00 | 0.05 | 0.05 | 0.00 | 0.05 | 0.06 | 0.00 | |
加密6分类 | 均值 | 89.10 | 85.52 | 94.23 | 85.51 | 85.80 | 92.51 | 87.31 | 85.62 | 93.32 |
标准差 | 0.21 | 0.18 | 0.18 | 0.10 | 0.11 | 0.05 | 0.12 | 0.12 | 0.05 | |
非加密6分类 | 均值 | 84.10 | 94.91 | 98.21 | 87.62 | 97.31 | 98.52 | 85.81 | 96.10 | 98.22 |
标准差 | 0.17 | 0.13 | 0.05 | 0.14 | 0.13 | 0.06 | 0.12 | 0.06 | 0.07 | |
12分类 | 均值 | 81.30 | 85.71 | 95.21 | 80.34 | 93.62 | 95.21 | 80.81 | 89.62 | 95.23 |
标准差 | 0.12 | 0.09 | 0.07 | 0.12 | 0.08 | 0.06 | 0.07 | 0.07 | 0.05 |
Tab. 4 Comparison of proposed model and classical encrypted traffic classification models
分类器 | 指标 | P | R | F1 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
C4.5 | 1D-CNN | 本文模型 | C4.5 | 1D-CNN | 本文模型 | C4.5 | 1D-CNN | 本文模型 | ||
2分类 | 均值 | 89.80 | 99.90 | 100.00 | 90.49 | 99.90 | 100.00 | 90.12 | 99.92 | 100.00 |
标准差 | 0.05 | 0.05 | 0.00 | 0.05 | 0.05 | 0.00 | 0.05 | 0.06 | 0.00 | |
加密6分类 | 均值 | 89.10 | 85.52 | 94.23 | 85.51 | 85.80 | 92.51 | 87.31 | 85.62 | 93.32 |
标准差 | 0.21 | 0.18 | 0.18 | 0.10 | 0.11 | 0.05 | 0.12 | 0.12 | 0.05 | |
非加密6分类 | 均值 | 84.10 | 94.91 | 98.21 | 87.62 | 97.31 | 98.52 | 85.81 | 96.10 | 98.22 |
标准差 | 0.17 | 0.13 | 0.05 | 0.14 | 0.13 | 0.06 | 0.12 | 0.06 | 0.07 | |
12分类 | 均值 | 81.30 | 85.71 | 95.21 | 80.34 | 93.62 | 95.21 | 80.81 | 89.62 | 95.23 |
标准差 | 0.12 | 0.09 | 0.07 | 0.12 | 0.08 | 0.06 | 0.07 | 0.07 | 0.05 |
类别 | 模型 | P | R | F1 | |||
---|---|---|---|---|---|---|---|
均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | ||
Chat | 文献[ | 78.41 | 0.07 | 81.22 | 0.07 | 79.63 | 0.10 |
本文模型 | 78.00 | 0.06 | 84.30 | 0.04 | 81.14 | 0.06 | |
文献[ | 97.10 | 0.14 | 96.82 | 0.07 | 96.64 | 0.10 | |
本文模型 | 95.41 | 0.06 | 95.13 | 0.06 | 95.20 | 0.06 | |
File | 文献[ | 89.30 | 0.06 | 77.90 | 0.04 | 83.23 | 0.08 |
本文模型 | 94.91 | 0.06 | 84.82 | 0.12 | 89.63 | 0.07 | |
P2P | 文献[ | 97.10 | 0.06 | 92.90 | 0.16 | 94.62 | 0.20 |
本文模型 | 97.10 | 0.06 | 97.15 | 0.06 | 97.18 | 0.06 | |
Streaming | 文献[ | 90.72 | 0.07 | 93.72 | 0.17 | 92.12 | 0.15 |
本文模型 | 95.91 | 0.06 | 95.72 | 0.06 | 95.83 | 0.06 | |
VoIP | 文献[ | 93.91 | 0.12 | 95.25 | 0.12 | 94.42 | 0.12 |
本文模型 | 94.21 | 0.06 | 93.90 | 0.06 | 94.12 | 0.04 |
Tab.5 Comparison of unencrypted traffic 6-class classification between model in literature[1] and the proposed model
类别 | 模型 | P | R | F1 | |||
---|---|---|---|---|---|---|---|
均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | ||
Chat | 文献[ | 78.41 | 0.07 | 81.22 | 0.07 | 79.63 | 0.10 |
本文模型 | 78.00 | 0.06 | 84.30 | 0.04 | 81.14 | 0.06 | |
文献[ | 97.10 | 0.14 | 96.82 | 0.07 | 96.64 | 0.10 | |
本文模型 | 95.41 | 0.06 | 95.13 | 0.06 | 95.20 | 0.06 | |
File | 文献[ | 89.30 | 0.06 | 77.90 | 0.04 | 83.23 | 0.08 |
本文模型 | 94.91 | 0.06 | 84.82 | 0.12 | 89.63 | 0.07 | |
P2P | 文献[ | 97.10 | 0.06 | 92.90 | 0.16 | 94.62 | 0.20 |
本文模型 | 97.10 | 0.06 | 97.15 | 0.06 | 97.18 | 0.06 | |
Streaming | 文献[ | 90.72 | 0.07 | 93.72 | 0.17 | 92.12 | 0.15 |
本文模型 | 95.91 | 0.06 | 95.72 | 0.06 | 95.83 | 0.06 | |
VoIP | 文献[ | 93.91 | 0.12 | 95.25 | 0.12 | 94.42 | 0.12 |
本文模型 | 94.21 | 0.06 | 93.90 | 0.06 | 94.12 | 0.04 |
类别 | 模型 | P | R | F1 | |||
---|---|---|---|---|---|---|---|
均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | ||
Chat | 文献[ | 84.10 | 0.12 | 70.60 | 0.07 | 78.61 | 0.11 |
本文模型 | 91.91 | 0.06 | 78.10 | 0.06 | 84.41 | 0.07 | |
文献[ | 93.92 | 0.15 | 85.50 | 0.07 | 89.51 | 0.09 | |
本文模型 | 94.60 | 0.06 | 91.70 | 0.06 | 93.22 | 0.09 | |
File | 文献[ | 90.52 | 0.12 | 98.62 | 0.07 | 94.40 | 0.13 |
本文模型 | 89.63 | 0.06 | 96.40 | 0.06 | 92.82 | 0.06 | |
P2P | 文献[ | 91.31 | 0.15 | 85.71 | 0.11 | 88.42 | 0.12 |
本文模型 | 95.20 | 0.06 | 96.58 | 0.13 | 95.81 | 0.04 | |
Streaming | 文献[ | 98.10 | 0.11 | 98.50 | 0.12 | 98.31 | 0.07 |
本文模型 | 97.70 | 0.07 | 96.43 | 0.06 | 97.11 | 0.06 | |
VoIP | 文献[ | 62.91 | 0.15 | 95.21 | 0.09 | 72.61 | 0.12 |
本文模型 | 86.91 | 0.06 | 93.42 | 0.06 | 88.72 | 0.05 | |
VPNChat | 文献[ | 95.30 | 0.08 | 95.20 | 0.07 | 95.31 | 0.16 |
本文模型 | 97.30 | 0.06 | 93.42 | 0.06 | 95.42 | 0.06 | |
VPNEmail | 文献[ | 96.92 | 0.15 | 92.82 | 0.07 | 94.80 | 0.13 |
本文模型 | 97.25 | 0.04 | 91.62 | 0.06 | 94.32 | 0.06 | |
VPNFile | 文献[ | 97.00 | 0.13 | 96.20 | 0.13 | 96.61 | 0.14 |
本文模型 | 97.42 | 0.06 | 96.82 | 0.04 | 97.12 | 0.10 | |
VPNP2P | 文献[ | 97.00 | 0.13 | 98.44 | 0.13 | 97.50 | 0.12 |
本文模型 | 97.22 | 0.06 | 98.50 | 0.06 | 97.81 | 0.10 | |
VPNStre | 文献[ | 96.94 | 0.16 | 98.45 | 0.13 | 96.70 | 0.13 |
本文模型 | 97.22 | 0.07 | 98.45 | 0.06 | 95.22 | 0.06 | |
VPNVoIP | 文献[ | 96.92 | 0.07 | 98.41 | 0.12 | 97.61 | 0.13 |
本文模型 | 97.31 | 0.06 | 98.51 | 0.15 | 97.89 | 0.07 |
Tab.6 Comparison of 12-class classification between model in literature[5] and the proposed model
类别 | 模型 | P | R | F1 | |||
---|---|---|---|---|---|---|---|
均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | ||
Chat | 文献[ | 84.10 | 0.12 | 70.60 | 0.07 | 78.61 | 0.11 |
本文模型 | 91.91 | 0.06 | 78.10 | 0.06 | 84.41 | 0.07 | |
文献[ | 93.92 | 0.15 | 85.50 | 0.07 | 89.51 | 0.09 | |
本文模型 | 94.60 | 0.06 | 91.70 | 0.06 | 93.22 | 0.09 | |
File | 文献[ | 90.52 | 0.12 | 98.62 | 0.07 | 94.40 | 0.13 |
本文模型 | 89.63 | 0.06 | 96.40 | 0.06 | 92.82 | 0.06 | |
P2P | 文献[ | 91.31 | 0.15 | 85.71 | 0.11 | 88.42 | 0.12 |
本文模型 | 95.20 | 0.06 | 96.58 | 0.13 | 95.81 | 0.04 | |
Streaming | 文献[ | 98.10 | 0.11 | 98.50 | 0.12 | 98.31 | 0.07 |
本文模型 | 97.70 | 0.07 | 96.43 | 0.06 | 97.11 | 0.06 | |
VoIP | 文献[ | 62.91 | 0.15 | 95.21 | 0.09 | 72.61 | 0.12 |
本文模型 | 86.91 | 0.06 | 93.42 | 0.06 | 88.72 | 0.05 | |
VPNChat | 文献[ | 95.30 | 0.08 | 95.20 | 0.07 | 95.31 | 0.16 |
本文模型 | 97.30 | 0.06 | 93.42 | 0.06 | 95.42 | 0.06 | |
VPNEmail | 文献[ | 96.92 | 0.15 | 92.82 | 0.07 | 94.80 | 0.13 |
本文模型 | 97.25 | 0.04 | 91.62 | 0.06 | 94.32 | 0.06 | |
VPNFile | 文献[ | 97.00 | 0.13 | 96.20 | 0.13 | 96.61 | 0.14 |
本文模型 | 97.42 | 0.06 | 96.82 | 0.04 | 97.12 | 0.10 | |
VPNP2P | 文献[ | 97.00 | 0.13 | 98.44 | 0.13 | 97.50 | 0.12 |
本文模型 | 97.22 | 0.06 | 98.50 | 0.06 | 97.81 | 0.10 | |
VPNStre | 文献[ | 96.94 | 0.16 | 98.45 | 0.13 | 96.70 | 0.13 |
本文模型 | 97.22 | 0.07 | 98.45 | 0.06 | 95.22 | 0.06 | |
VPNVoIP | 文献[ | 96.92 | 0.07 | 98.41 | 0.12 | 97.61 | 0.13 |
本文模型 | 97.31 | 0.06 | 98.51 | 0.15 | 97.89 | 0.07 |
1 | GUO L L, WU Q Q, LIU S L, et al. Deep learning-based real-time VPN encrypted traffic identification methods[J]. Journal of Real-Time Image Processing, 2020, 17(1): 103-114. 10.1007/s11554-019-00930-6 |
2 | 王洋,陈紫儿,柳瑞春,等. 基于决策树算法的网络加密流量识别方法[J]. 长江信息通信, 2021, 34(11):15-17. 10.3969/j.issn.1673-1131.2021.11.005 |
WANG Y, CHEN Z E, LIU R C, et al. Network encryption traffic identification method based on decision tree algorithm[J]. Changjiang Information and Communications, 2021, 34(11):15-17. 10.3969/j.issn.1673-1131.2021.11.005 | |
3 | 连晓伟,马垚,陈永乐,等. 基于载荷特征与统计特征的Shodan流量识别[J]. 计算机工程, 2021, 47(1): 117-122. 10.19678/j.issn.1000-3428.0056888 |
LIAN X W, MA Y, CHEN Y L, et al. Shodan traffic identification based on load characteristics and statistical characteristics[J]. Computer Engineering, 2021, 47(1):117-122. 10.19678/j.issn.1000-3428.0056888 | |
4 | WANG W, ZHU M, WANG J L, et al. End-to-end encrypted traffic classification with one-dimensional convolution neural networks[C]// Proceedings of the 2017 IEEE International Conference on Intelligence and Security Informatics. Piscataway: IEEE, 2017: 43-48. 10.1109/isi.2017.8004872 |
5 | LOTFOLLAHI M, JAFARI SIAVOSHANI M, SHIRALI HOSSEIN ZADE R, et al. Deep packet: a novel approach for encrypted traffic classification using deep learning[J]. Soft Computing, 2020, 24(3): 1999-2012. 10.1007/s00500-019-04030-2 |
6 | REZAEI S, LIU X. Deep learning for encrypted traffic classification: an overview[J]. IEEE Communications Magazine, 2019, 57(5): 76-81. 10.1109/mcom.2019.1800819 |
7 | REZAEI S, KROENCKE B, LIU X. Large-scale mobile app identification using deep learning[J]. IEEE Access, 2020, 8: 348-362. 10.1109/access.2019.2962018 |
8 | LU B, LUKTARHAN N, DING C, et al. ICLSTM: encrypted traffic service identification based on Inception-LSTM neural network[J]. Symmetry, 2021, 13(6): No.1080. 10.3390/sym13061080 |
9 | REN X M, GU H X, WEI W T. Tree-RNN: tree structural recurrent neural network for network traffic classification[J]. Expert Systems with Applications, 2021, 167: No.114363. 10.1016/j.eswa.2020.114363 |
10 | SOLEYMANPOUR S, SADR H, NAZARI SOLEIMANDARABI M. CSCNN: cost-sensitive convolutional neural network for encrypted traffic classification[J]. Neural Processing Letters, 2021, 53(5): 3497-3523. 10.1007/s11063-021-10534-6 |
11 | 李艳霞,柴毅,胡友强,等. 不平衡数据分类方法综述[J]. 控制与决策, 2019, 34(4): 673-688. 10.13195/j.kzyjc.2018.0865 |
LI Y X, CHAI Y, HU Y Q, et al. Review of imbalanced data classification methods[J]. Control and Decision, 2019, 34(4): 673-688. 10.13195/j.kzyjc.2018.0865 | |
12 | SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, Inception-ResNet and the impact of residual connections on learning[C]// Proceedings of the 31st AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2017: 4278-4284. 10.1609/aaai.v31i1.11231 |
13 | IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]// Proceedings of the 32nd International Conference on Machine Learning. New York: JMLR.org, 2015: 448-456. |
14 | DOUGLAS S C, YU J T. Why RELU units sometimes die: analysis of single-unit error backpropagation in neural networks[C]// Proceedings of the 52nd Asilomar Conference on Signals, Systems, and Computers. Piscataway: IEEE, 2018:864-868. 10.1109/acssc.2018.8645556 |
15 | 陈超,齐峰. 卷积神经网络的发展及其在计算机视觉领域中的应用综述[J]. 计算机科学, 2019, 46(3):63-73. 10.11896/j.issn.1002-137X.2019.03.008 |
CHEN C, QI F. Review on development of convolutional neural network and its application in computer vision[J]. Computer Science, 2019, 46(3):63-73. 10.11896/j.issn.1002-137X.2019.03.008 | |
16 | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2):318-327. 10.1109/tpami.2018.2858826 |
17 | DRAPER-GIL G, LASHKARI A H, MAMUN M S I, et al. Characterization of encrypted and VPN traffic using time-related features[C]// Proceedings of the 2nd International Conference on Information Systems Security and Privacy. Setúbal: SciTePress, 2016:407-414. 10.5220/0005740704070414 |
[1] | Yunchuan HUANG, Yongquan JIANG, Juntao HUANG, Yan YANG. Molecular toxicity prediction based on meta graph isomorphism network [J]. Journal of Computer Applications, 2024, 44(9): 2964-2969. |
[2] | Xin YANG, Xueni CHEN, Chunjiang WU, Shijie ZHOU. Short-term traffic flow prediction of urban highway based on variant residual model and Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2947-2951. |
[3] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
[4] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[5] | Xiyuan WANG, Zhancheng ZHANG, Shaokang XU, Baocheng ZHANG, Xiaoqing LUO, Fuyuan HU. Unsupervised cross-domain transfer network for 3D/2D registration in surgical navigation [J]. Journal of Computer Applications, 2024, 44(9): 2911-2918. |
[6] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
[7] | Yuhan LIU, Genlin JI, Hongping ZHANG. Video pedestrian anomaly detection method based on skeleton graph and mixed attention [J]. Journal of Computer Applications, 2024, 44(8): 2551-2557. |
[8] | Zhonghua LI, Yunqi BAI, Xuejin WANG, Leilei HUANG, Chujun LIN, Shiyu LIAO. Low illumination face detection based on image enhancement [J]. Journal of Computer Applications, 2024, 44(8): 2588-2594. |
[9] | Kaili DENG, Weibo WEI, Zhenkuan PAN. Industrial defect detection method with improved masked autoencoder [J]. Journal of Computer Applications, 2024, 44(8): 2595-2603. |
[10] | Yanjie GU, Yingjun ZHANG, Xiaoqian LIU, Wei ZHOU, Wei SUN. Traffic flow forecasting via spatial-temporal multi-graph fusion [J]. Journal of Computer Applications, 2024, 44(8): 2618-2625. |
[11] | Qianhong SHI, Yan YANG, Yongquan JIANG, Xiaocao OUYANG, Wubo FAN, Qiang CHEN, Tao JIANG, Yuan LI. Multi-granularity abrupt change fitting network for air quality prediction [J]. Journal of Computer Applications, 2024, 44(8): 2643-2650. |
[12] | Zheng WU, Zhiyou CHENG, Zhentian WANG, Chuanjian WANG, Sheng WANG, Hui XU. Deep learning-based classification of head movement amplitude during patient anaesthesia resuscitation [J]. Journal of Computer Applications, 2024, 44(7): 2258-2263. |
[13] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[14] | Zhi ZHANG, Xin LI, Naifu YE, Kaixi HU. DKP: defending against model stealing attacks based on dark knowledge protection [J]. Journal of Computer Applications, 2024, 44(7): 2080-2086. |
[15] | Zhe KONG, Han LI, Shaowei GAN, Mingru KONG, Bingtao HE, Ziyu GUO, Ducheng JIN, Zhaowen QIU. Structure segmentation model for 3D kidney images based on asymmetric multi-decoder and attention module [J]. Journal of Computer Applications, 2024, 44(7): 2216-2224. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||