Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (9): 2940-2947.DOI: 10.11772/j.issn.1001-9081.2023030381
Previous Articles Next Articles
Received:
2023-04-07
Revised:
2023-07-03
Accepted:
2023-07-06
Online:
2023-12-04
Published:
2023-12-04
Contact:
MA Qiaomei
Supported by:
李众1,王雅婧2,马巧梅3
通讯作者:
马巧梅
基金资助:
CLC Number:
李众 王雅婧 马巧梅. 基于空洞卷积的医学图像超分辨率重建算法研究[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2940-2947.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023030381
模块 | PSNR/dB | SSIM |
---|---|---|
DSC | 29.02 | 0.796 3 |
DSC+CA | 30.94 | 0.883 2 |
DSC+SAM | 29.81 | 0.800 0 |
DSC+ECAM | 31.02 | 0.879 5 |
DSC+ISAM | 30.27 | 0.877 1 |
DSC+ECAM+ISAM | 31.35 | 0.901 3 |
Tab. 1 Comparison of reconstruction performance of different modules
模块 | PSNR/dB | SSIM |
---|---|---|
DSC | 29.02 | 0.796 3 |
DSC+CA | 30.94 | 0.883 2 |
DSC+SAM | 29.81 | 0.800 0 |
DSC+ECAM | 31.02 | 0.879 5 |
DSC+ISAM | 30.27 | 0.877 1 |
DSC+ECAM+ISAM | 31.35 | 0.901 3 |
测试集 | 算法 | 不同放大倍数下的PSNR/dB | 不同放大倍数下的SSIM | ||||
---|---|---|---|---|---|---|---|
2倍 | 3倍 | 4倍 | 2倍 | 3倍 | 4倍 | ||
测试集A | Bicubic | 24.88 | 22.97 | 22.15 | 0.789 5 | 0.705 0 | 0.609 8 |
SRCNN | 28.16 | 26.51 | 26.70 | 0.860 0 | 0.794 5 | 0.795 8 | |
FSRCNN | 26.69 | 24.34 | 24.71 | 0.803 5 | 0.693 7 | 0.705 4 | |
VDSR | 30.12 | 27.56 | 27.78 | 0.898 0 | 0.824 5 | 0.818 5 | |
RCAN | 30.44 | 28.47 | 27.93 | 0.891 2 | 0.835 1 | 0.813 7 | |
文献[ | 30.07 | 29.10 | 27.62 | 0.887 1 | 0.821 4 | 0.815 4 | |
FAWDN | 31.11 | 28.95 | 28.44 | 0.923 1 | 0.832 2 | 0.819 1 | |
MIRN | 30.57 | 29.03 | 27.87 | 0.895 7 | 0.825 0 | 0.810 6 | |
本文算法 | 31.35 | 29.31 | 28.74 | 0.901 3 | 0.847 8 | 0.816 9 | |
测试集B | Bicubic | 30.15 | 27.41 | 24.93 | 0.789 5 | 0.808 8 | 0.719 2 |
SRCNN | 34.05 | 30.07 | 27.43 | 0.860 0 | 0.864 8 | 0.784 4 | |
FSRCNN | 29.51 | 26.21 | 24.80 | 0.803 5 | 0.749 5 | 0.689 4 | |
VDSR | 36.20 | 30.80 | 28.06 | 0.898 0 | 0.879 6 | 0.806 3 | |
RCAN | 35.42 | 31.54 | 30.64 | 0.902 5 | 0.863 6 | 0.827 2 | |
文献[ | 35.92 | 33.21 | 30.01 | 0.910 0 | 0.891 0 | 0.829 5 | |
FAWDN | 35.37 | 32.74 | 30.58 | 0.915 2 | 0.890 2 | 0.815 0 | |
MIRN | 35.58 | 33.43 | 30.29 | 0.903 8 | 0.887 6 | 0.828 8 | |
本文算法 | 35.83 | 33.68 | 30.78 | 0.901 3 | 0.897 5 | 0.831 1 |
Tab. 2 Comparison of PSNR/SSIM values of different algorithms
测试集 | 算法 | 不同放大倍数下的PSNR/dB | 不同放大倍数下的SSIM | ||||
---|---|---|---|---|---|---|---|
2倍 | 3倍 | 4倍 | 2倍 | 3倍 | 4倍 | ||
测试集A | Bicubic | 24.88 | 22.97 | 22.15 | 0.789 5 | 0.705 0 | 0.609 8 |
SRCNN | 28.16 | 26.51 | 26.70 | 0.860 0 | 0.794 5 | 0.795 8 | |
FSRCNN | 26.69 | 24.34 | 24.71 | 0.803 5 | 0.693 7 | 0.705 4 | |
VDSR | 30.12 | 27.56 | 27.78 | 0.898 0 | 0.824 5 | 0.818 5 | |
RCAN | 30.44 | 28.47 | 27.93 | 0.891 2 | 0.835 1 | 0.813 7 | |
文献[ | 30.07 | 29.10 | 27.62 | 0.887 1 | 0.821 4 | 0.815 4 | |
FAWDN | 31.11 | 28.95 | 28.44 | 0.923 1 | 0.832 2 | 0.819 1 | |
MIRN | 30.57 | 29.03 | 27.87 | 0.895 7 | 0.825 0 | 0.810 6 | |
本文算法 | 31.35 | 29.31 | 28.74 | 0.901 3 | 0.847 8 | 0.816 9 | |
测试集B | Bicubic | 30.15 | 27.41 | 24.93 | 0.789 5 | 0.808 8 | 0.719 2 |
SRCNN | 34.05 | 30.07 | 27.43 | 0.860 0 | 0.864 8 | 0.784 4 | |
FSRCNN | 29.51 | 26.21 | 24.80 | 0.803 5 | 0.749 5 | 0.689 4 | |
VDSR | 36.20 | 30.80 | 28.06 | 0.898 0 | 0.879 6 | 0.806 3 | |
RCAN | 35.42 | 31.54 | 30.64 | 0.902 5 | 0.863 6 | 0.827 2 | |
文献[ | 35.92 | 33.21 | 30.01 | 0.910 0 | 0.891 0 | 0.829 5 | |
FAWDN | 35.37 | 32.74 | 30.58 | 0.915 2 | 0.890 2 | 0.815 0 | |
MIRN | 35.58 | 33.43 | 30.29 | 0.903 8 | 0.887 6 | 0.828 8 | |
本文算法 | 35.83 | 33.68 | 30.78 | 0.901 3 | 0.897 5 | 0.831 1 |
算法 | 运行时间/s | 算法 | 运行时间/s |
---|---|---|---|
Bicubic | 1.071 | 文献[ | 3.056 |
SRCNN | 1.654 | FAWDN | 5.631 |
FSRCNN | 1.241 | MIRN | 4.944 |
VDSR | 2.062 | 本文算法 | 3.527 |
RCAN | 2.453 |
Tab. 3 Average time spent to reconstruct images bydifferent algorithms
算法 | 运行时间/s | 算法 | 运行时间/s |
---|---|---|---|
Bicubic | 1.071 | 文献[ | 3.056 |
SRCNN | 1.654 | FAWDN | 5.631 |
FSRCNN | 1.241 | MIRN | 4.944 |
VDSR | 2.062 | 本文算法 | 3.527 |
RCAN | 2.453 |
1 | CHRISTENSEN-JEFFRIES K, COUTURE O, DAYTON P A, et al. Super-resolution ultrasound imaging[J]. Ultrasound in Medicine and Biology, 2020, 46(4): 865-891. 10.1016/j.ultrasmedbio.2019.11.013 |
2 | BÄTZ M, EICHENSEER A, SEILER J, et al. Hybrid super-resolution combining example-based single-image and interpolation-based multi-image reconstruction approaches[C]// Proceeding of the 2015 IEEE International Conference on Image Processing. Piscataway: IEEE, 2015: 58-62. 10.1109/icip.2015.7350759 |
3 | 李现国,冯欣欣,李建雄. 多尺度残差网络的单幅图像超分辨率重建[J]. 计算机工程与应用, 2021, 57(7):215-221. 10.3778/j.issn.1002-8331.2001-0073 |
LI X G, FENG X X, LI J X. Single image super-resolution reconstruction based on multi-scale residual network[J]. Computer Engineering and Applications, 2021, 57(7): 215-221. 10.3778/j.issn.1002-8331.2001-0073 | |
4 | DONG C, LOY C C, HE K M,et al . Image super-resolution using deep convolutional networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38 (2) : 295-307. 10.1109/tpami.2015.2439281 |
5 | KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE,2016:1646-1654. 10.1109/cvpr.2016.182 |
6 | LIM B,SON S, KIM H,et al. Enhanced deep residual networks for single image super-resolution[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE,2017:1132-1440. 10.1109/cvprw.2017.151 |
7 | CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]∥ Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017:1800-1807. 10.1109/cvpr.2017.195 |
8 | CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Deep Lab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018,40(4):834-848. 10.1109/tpami.2017.2699184 |
9 | 胡雪影,郭海儒,朱蓉. 基于混合深度卷积网络的图像超分辨率重建[J]. 计算机应用, 2020, 40(7):2069-2076. 10.11772/j.issn.1001-9081.2019122149 |
HU X Y, GUO H R, ZHU R. Image super-resolution reconstruction based on hybrid deep convolutional network[J]. Journal of Computer Applications, 2020, 40(7): 2069-2076. 10.11772/j.issn.1001-9081.2019122149 | |
10 | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer,2018: 3-19. |
11 | 张晔,刘蓉,刘明,等. 基于多通道注意力机制的图像超分辨率重建网络[J]. 计算机应用,2022,42(5):1563-1569. 10.11772/j.issn.1001-9081.2021030498 |
ZHANG Y, LIU R, LIU M, et al. Image super-resolution reconstruction network based on multi-channel attention mechanism[J]. Journal of Computer Applications, 2022, 42(5): 1563-1569. 10.11772/j.issn.1001-9081.2021030498 | |
12 | ZHANG Y N, AN M Q. Deep learning-and transfer learning-based super resolution reconstruction from single medical image[J]. Journal of Healthcare Engineering, 2017, 2017:No.5859727. 10.1155/2017/5859727 |
13 | WANG Y K, TENG Q Z, HE X H, et al. CT-image of rock samples super resolution using 3D convolutional neural network[J]. Computers and Geosciences, 2019, 133: No.104314. 10.1016/j.cageo.2019.104314 |
14 | 高媛,王晓晨,秦品乐,等. 基于深度可分离卷积和宽残差网络的医学影像超分辨率重建[J]. 计算机应用, 2019, 39(9):2731-2737. 10.11772/j.issn.1001-9081.2019030413 |
GAO Y, WANG X C, QIN P L, et al. Medical image super-resolution reconstruction based on deep separable convolution and wide residual network[J]. Journal of Computer Applications, 2019, 39(9): 2731-2737. 10.11772/j.issn.1001-9081.2019030413 | |
15 | CHEN L H, YANG X M, JEON G, et al. A trusted medical image super-resolution method based on feedback adaptive weighted dense network[J]. Artificial Intelligence in Medicine,2020,106:No.101857. 10.1016/j.artmed.2020.101857 |
16 | QIU D F, ZHENG L X, ZHU J Q, et al. Multiple improved residual networks for medical image super-resolution[J]. Future Generation Computer Systems, 2021,116: 200-208. 10.1016/j.future.2020.11.001 |
17 | HE K M, ZHANG X Y, REN SH Q,et al.Deep residual learning for image recognition[C]// Proceeding of the 2016 IEEE Conference on Computer Vision and Pattern Recongnition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 |
18 | ENGEL J, KOLTUN V, CREMERS D. Direct sparse odometry [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018,40(3):611-625. 10.1109/tpami.2017.2658577 |
19 | CANNY J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986,PAMI-8(6): 679-698. 10.1109/tpami.1986.4767851 |
20 | ZHAO H, GALLO O, FROSIO I, et al. Loss functions for image restoration with neural networks[J]. IEEE Transactions on Computational Imaging, 2017, 3(1): 47-57. 10.1109/tci.2016.2644865 |
21 | SHEN H. Towards a mathematical understanding of the difficulty in learning with feedforward neural networks [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 811-820. 10.1109/cvpr.2018.00091 |
22 | ZHANG R, ISOLA P, EFROS A A, et al. The unreasonable effectiveness of deep features as a perceptual metric[C]∥ Proceeding of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018:586-595. 10.1109/cvpr.2018.00068 |
23 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [EB/OL]. [2023-01-17]. . |
24 | KEYS R. Cubic convolution interpolation for digital image processing[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981, 29(6): 1153-1160. 10.1109/tassp.1981.1163711 |
25 | DONG C, LOY C C, TANG X. Accelerating the super-resolution convolutional neural network [EB/OL]. [2022-12-18]. . 10.1007/978-3-319-46475-6_25 |
26 | ZHANG Y L, LI K P, LI K, et al. Image super-resolution using very deep residual channel attention networks[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 286-301. |
27 | 李俊珠,郑华,雷帅,等. 基于多尺度注意力残差网络的图像超分辨率重建[J]. 计算机系统应用, 2022, 31(5):324-330. |
LI J Z, ZHENG H, LEI S, et al. Image super-resolution reconstruction based on multi-scale attention residual network[J]. Computer Systems and Applications, 2022, 31(5):324-330. |
[1] | Chun XU, Shuangyan JI, Huan MA, Enwei SUN, Mengmeng WANG, Mingyu SU. Consultation recommendation method based on knowledge graph and dialogue structure [J]. Journal of Computer Applications, 2025, 45(4): 1157-1168. |
[2] | Liwei ZHANG, Quan LIANG, Yutao HU, Qiaole ZHU. Channel shuffle attention mechanism based on group convolution [J]. Journal of Computer Applications, 2025, 45(4): 1069-1076. |
[3] | Kunyuan JIANG, Xiaoxia LI, Li WANG, Yaodan CAO, Xiaoqiang ZHANG, Nan DING, Yingyue ZHOU. Boundary-cross supervised semantic segmentation network with decoupled residual self-attention [J]. Journal of Computer Applications, 2025, 45(4): 1120-1129. |
[4] | Shiyue GUO, Jianwu DANG, Yangping WANG, Jiu YONG. 3D hand pose estimation combining attention mechanism and multi-scale feature fusion [J]. Journal of Computer Applications, 2025, 45(4): 1293-1299. |
[5] | Liqin WANG, Zhilei GENG, Yingshuang LI, Yongfeng DONG, Meng BIAN. Open-world knowledge reasoning model based on path and enhanced triplet text [J]. Journal of Computer Applications, 2025, 45(4): 1177-1183. |
[6] | Lina HUO, Leren XUE, Yujun DAI, Xinyu ZHAO, Shihang WANG, Wei WANG. Gait recognition method based on dilated reparameterization and atrous convolution architecture [J]. Journal of Computer Applications, 2025, 45(4): 1285-1292. |
[7] | Jie HU, Qiyang ZHENG, Jun SUN, Yan ZHANG. Multi-label classification model based on multi-label relational graph and local dynamic reconstruction learning [J]. Journal of Computer Applications, 2025, 45(4): 1104-1112. |
[8] | Haijun GENG, Yun DONG, Zhiguo HU, Haotian CHI, Jing YANG, Xia YIN. Encrypted traffic classification method based on Attention-1DCNN-CE [J]. Journal of Computer Applications, 2025, 45(3): 872-882. |
[9] | Baohua YUAN, Jialu CHEN, Huan WANG. Medical image segmentation network integrating multi-scale semantics and parallel double-branch [J]. Journal of Computer Applications, 2025, 45(3): 988-995. |
[10] | Jiayang GUI, Shunji WANG, Zhengkang ZHOU, Jiashan TANG. Tunnel foreign object detection algorithm based on improved YOLOv8n [J]. Journal of Computer Applications, 2025, 45(2): 655-661. |
[11] | Haiteng MENG, Xiaole ZHAO, Tianrui LI. Lightweight image super-resolution reconstruction based on asymmetric information distillation network [J]. Journal of Computer Applications, 2025, 45(2): 601-609. |
[12] | Dixin WANG, Jiahao WANG, Min LI, Hao CHEN, Guangyao HU, Yu GONG. Abnormal attack detection for underwater acoustic communication network [J]. Journal of Computer Applications, 2025, 45(2): 526-533. |
[13] | Yan LI, Guanhua YE, Yawen LI, Meiyu LIANG. Enterprise ESG indicator prediction model based on richness coordination technology [J]. Journal of Computer Applications, 2025, 45(2): 670-676. |
[14] | Qijian CAI, Wei TAN. Semantic graph enhanced multi-modal recommendation algorithm [J]. Journal of Computer Applications, 2025, 45(2): 421-427. |
[15] | Tianqi ZHANG, Shuang TAN, Xiwen SHEN, Juan TANG. Image watermarking method combining attention mechanism and multi-scale feature [J]. Journal of Computer Applications, 2025, 45(2): 616-623. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||